

РАБОЧАЯ ДОКУМЕНТАЦИЯ РЕКЛАМНО-ИНФОРМАЦИОННАЯ ВЫВЕСКА "VOXYS"

Габаритные размеры: 6000х970 мм

Адрес установки: Самарская область, г. Тольятти, ул. Карла Маркса, 57

ШИФР: 03.22-013

Представитель заказчика:

ГИП:

2022

ВЕДОМОСТЬ ЧЕРТЕЖЕЙ ОСНОВНОГО КОМПЛЕКТА ПРОЕКТНОЙ ДОКУМЕНТАЦИИ

Обозначение	Наименование	/lucm
03.22-013/000.0Д	Общие данные	Лист 2
03.22-013/000.0B	Οδιμυῦ θυθ	Лист 3
03.22-013/000.0B	Расположение точек крепления на фасаде. Изометрия	Лист 4
03.22-013/000.0B	Распоположение монтажных стоек. Изометрия	Лист 5
03.22-013/000.0B	Фиксация секций. Изометрия	Лист 6
03.22-013/01.000.СБ	Секция С-1. Сборочный чертеж	Лист 7
03.22-013/01.000.01	Подрамник С-1	Лист 8
03.22-013/02.000.СБ	Секция С-2. Сборочный чертеж	Лист 9
03.22-013/02.000.01	Подрамник С-2	/lucm 10
03.22-013/03.000.СБ	Секция С-3. Сборочный чертеж	/lucm 11
03.22-013/03.000.01	Подрамник С-3	/lucm 12
03.22-013/000.001	Стойка монтажная	/lucm 13
03.22-013/000.002	Втулка	/lucm 14
03.22-013/000.003	Объемные световые буквы. Взрыв- схема	/lucm 15

ДИЗАЙН-МАКЕТ

ОБЩИЕ ДАННЫЕ

Комплект проектной документации рекламно-информационной вывески:

- 1. Основание для проектирования:
- 2. Исходные данные.
 - 2.1. Адрес объекта: Самарская область, г. Тольятти, ул. Карла Маркса, 57
 - 2.2 Техническое задание
 - 2.3 Проектная документация разработана в соответствии с нормативными документами по строительству, действующими на территории РФ.
- 3. Конструктивное решение.

Вывеска "VOXYS". Габаритные размеры: 6000x970 мм.

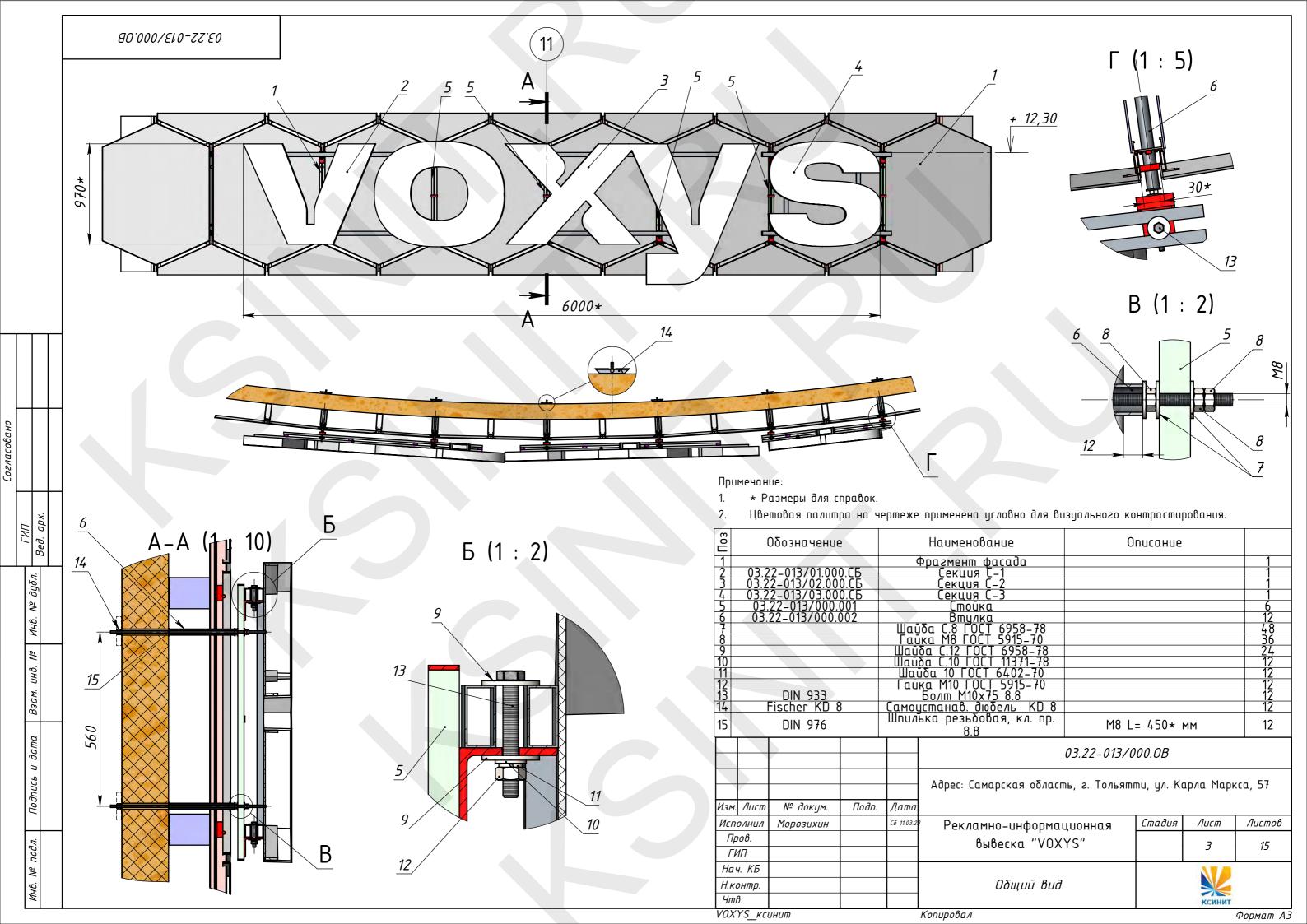
Представляет собой объемные клееные буквы глубиной 90 мм со светодиодной

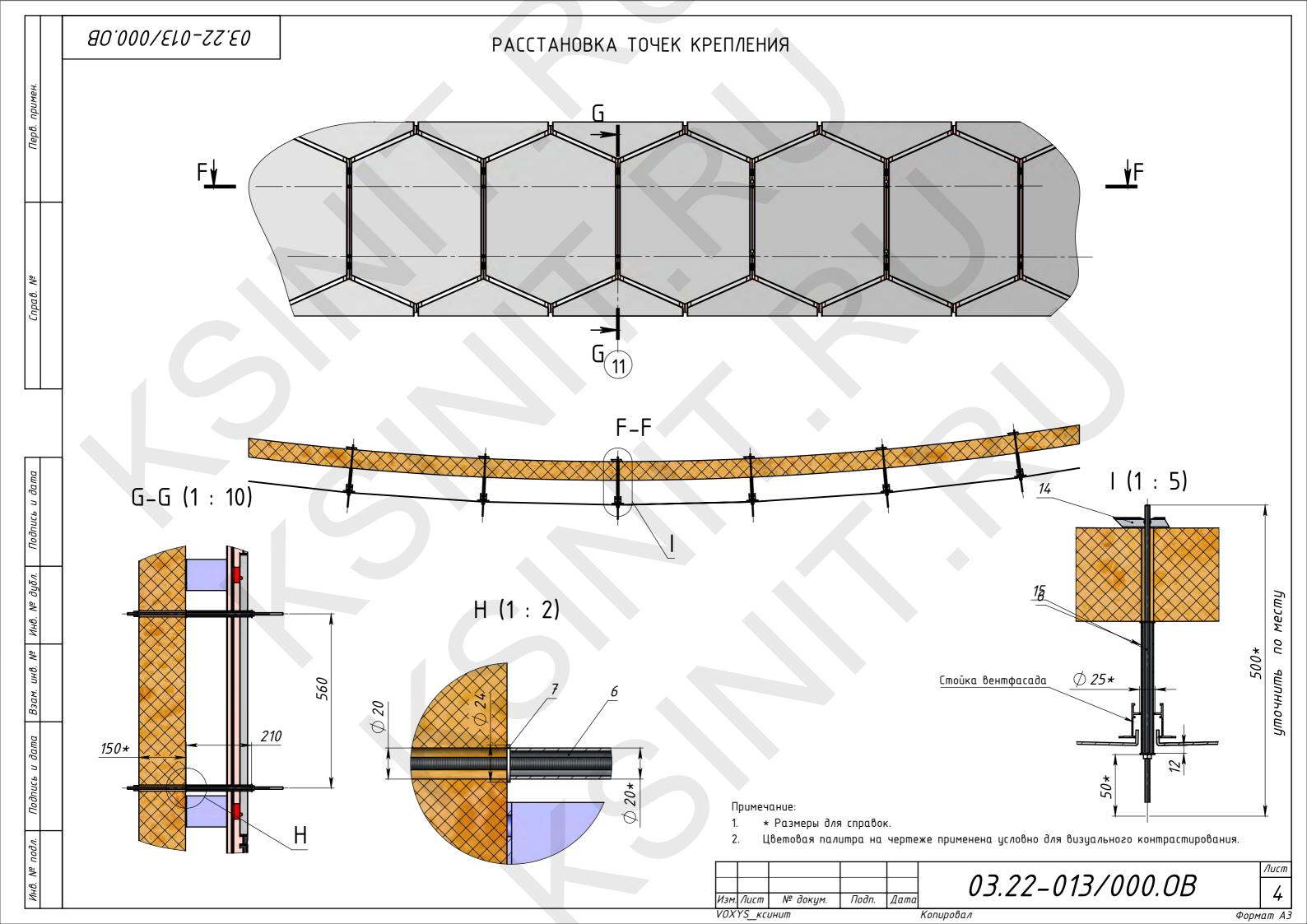
подсветкой. Буквы закреплены при помощи саморезов с пресс шайбой SMR SV 4,2x19 на сварном подрамнике из профильной стальной трубы 40x20x1,5 ГОСТ 8645-68.

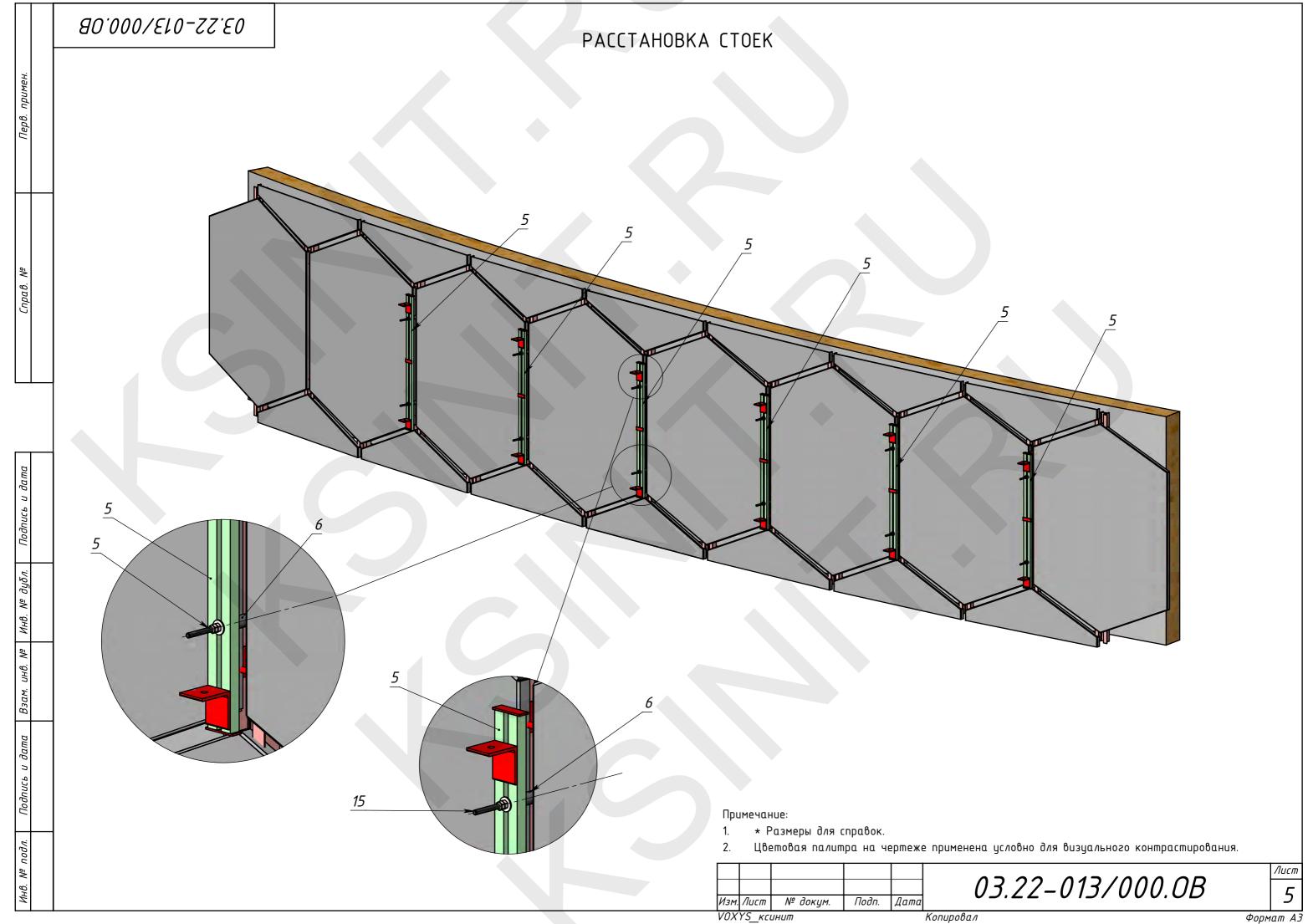
Вывеска монтируется на фасад здания при помощи самоустанавливающихя дюбелей Fischer KD 8 (либо аналогами).

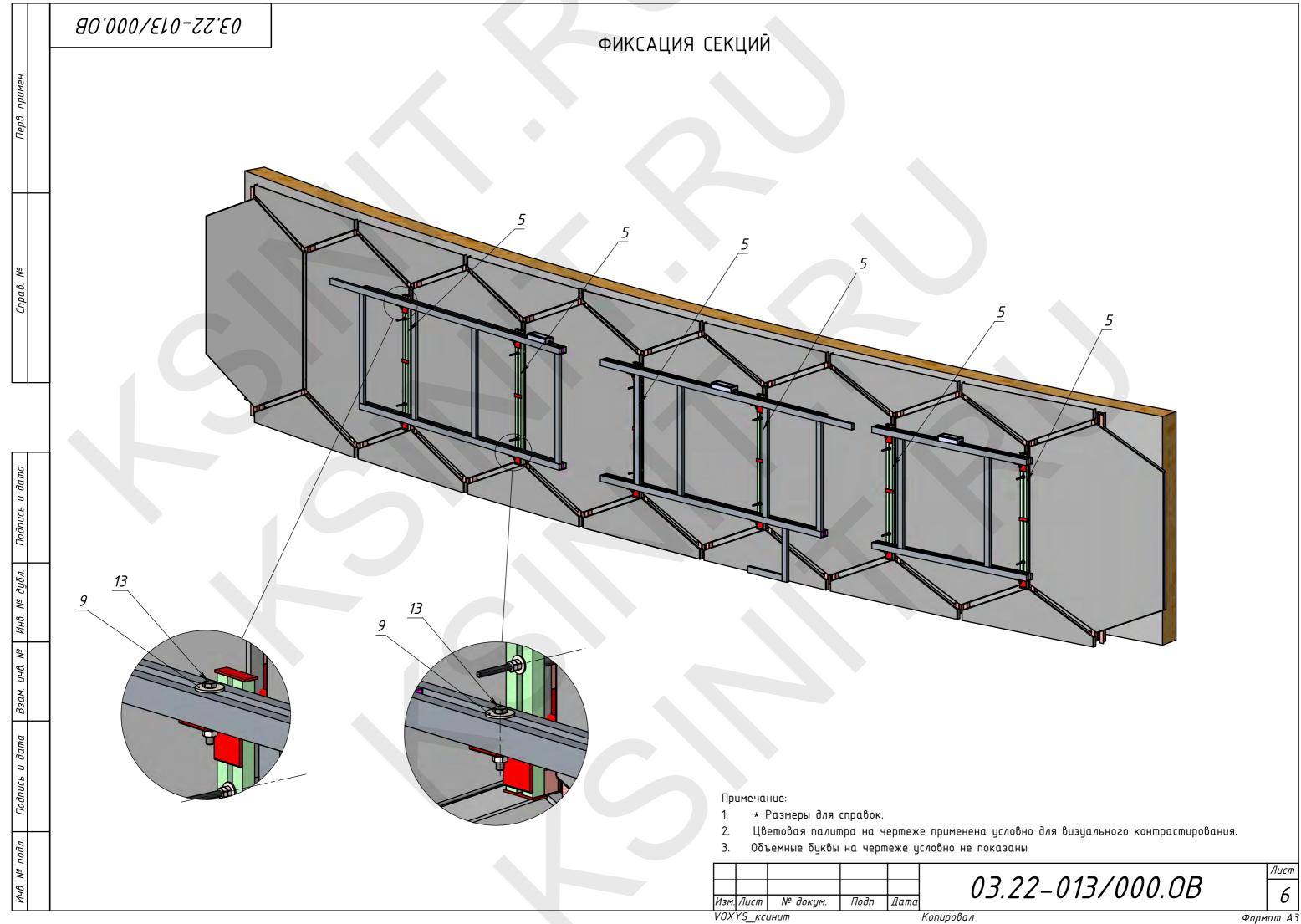
Подрамники и другие металлоконструкции окрашиваются в цвет фасада на заводе-изготовителе.

- 4. Указания к разработке чертежей , изготовлению и монтажу металлоконструкций.
- 4.1. Изготовление и монтаж конструкций производить в соответствии с требованиями:
 - ГОСТ 23118-99 "Конструкции стальные строительные. Общие технические условия";
 - СП53-101-98 "Изготовление и контроль качественных строительных конструкций";
 - МДС 53-1.2001 "Рекомендации по монтажу стальных строительных конструкций" (к СНиП 3.03.01-87;
- 4.2. Все заводские соединения элементов- сварные.
- 4.3. Материалы для сварки (заводской и монтажной) принимать по таблице 55, приложения 2
 - СНиП II-23-81 "Стальные конструкции. Нормы проектирования":

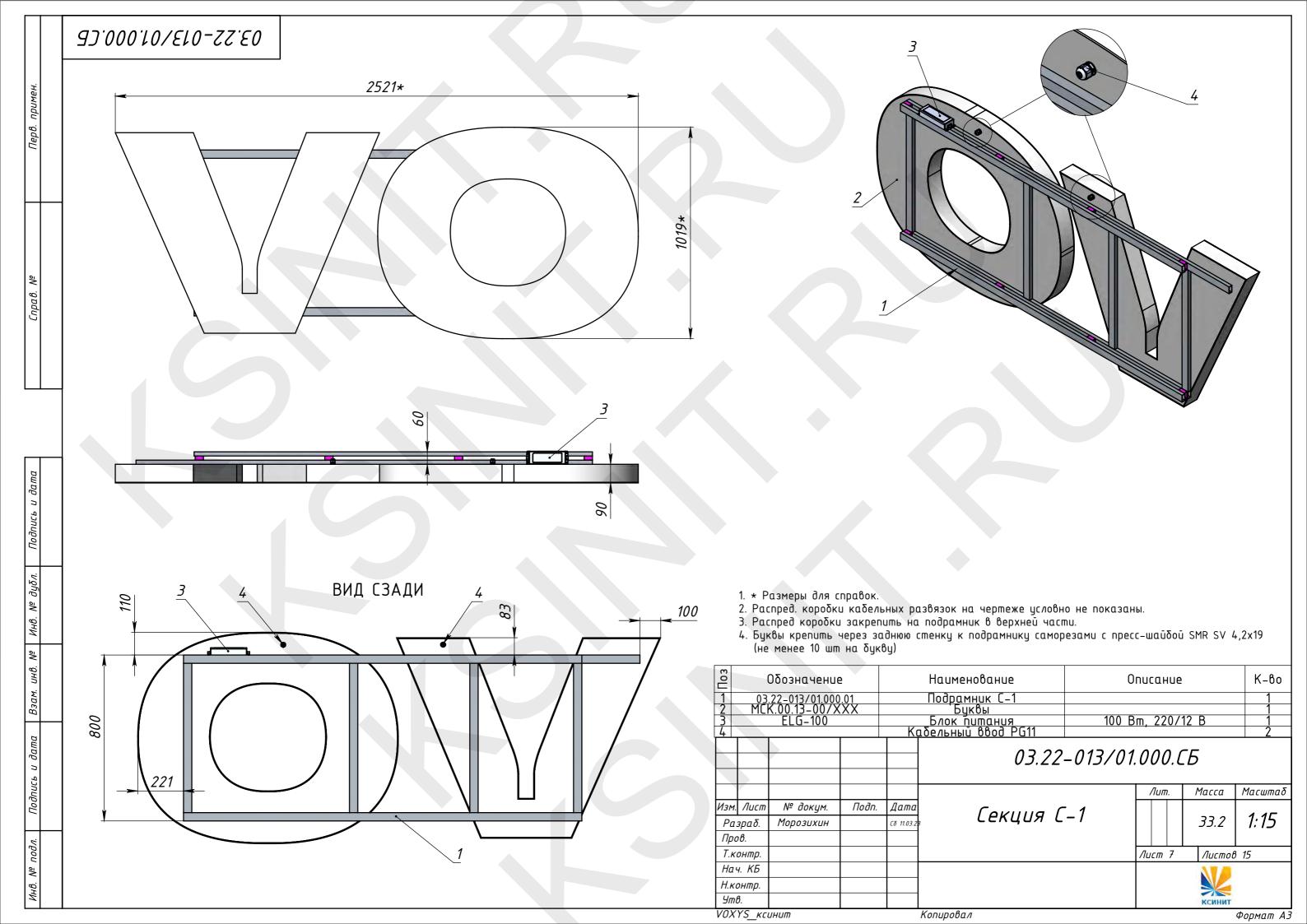

 Применяемые электроды должны соответствовать ГОСТ 9467-75;
 - Категории и уровни качества сварных швов в соответствии с ГОСТ 23118-99.
 - Сварные соединения выполнять угловыми и стыковыми швами по контуру сопряжения деталей, в соответствии с требованиями ГОСТ 5264-80. Катеты сварных швов принять по наименьшей толщине свариваемых деталей.
- 4.4. Все стальные конструкции должны поставляться на монтаж полностью окрашенными отправочными марками.
- 4.5. Все монтажные соединения выполняются на болтах класса прочности 8.8, класса точности –В. Болты класса точности 8.8 (по ГОСТ 1759.4–87*), гайки (по ГОСТ 1759.5–87*); шайбы (по ГОСТ 18123–82*).
- 5. Антикоррозийная защита.
- 5.1. Защиту металлоконструкций от коррозии производить на заводе-изготовителе.
- 5.2. Поверхности металлоконструкций должны иметь третью степень очистки от окислов по ГОСТ 9.402-80* и первую степень обезжиривания. Работы по окраске конструкций производить в соответствии со СНиП 3.04.03-85 "Правила производства и приемки работ. Защита стальных конструкций от коррозии" и ГОСТ 12.3.035-84 "Работы окрасочные.

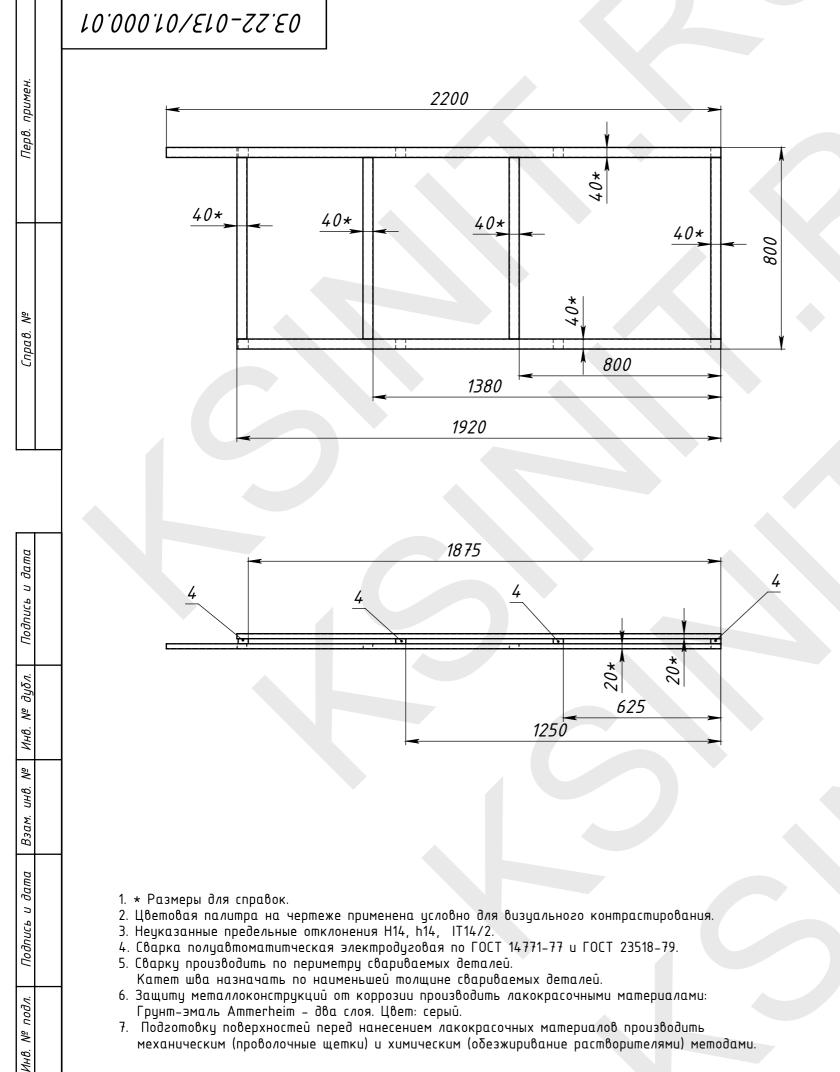

Защита стальных конструкции от коррозии и гост 12.3.035-84 Работы окрасочные. Требования безопасности". Качество лакокрасочного покрытия должно соответствовать V классу по ГОСТ 9.032-74*.

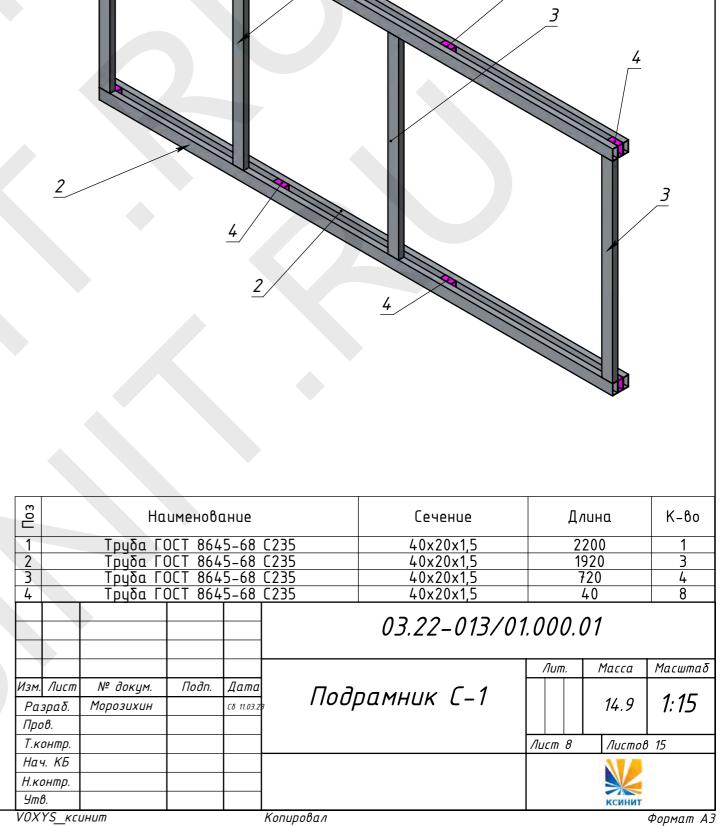

- 5.3. Места монтажных стыков после окончательного закрепления, а также элементы конструкций с нарушением заводской окраски, окрасить вышеуказанным покрытием.
- 5.4. Все открытые торцы металлических замкнутых профилей заглушить пластиковыми заглушками.
- 6. Эксплуатация и обслуживание.
- 6.1 Любые работы по эксплуатации и обслуживанию установки проводить в соответствии с требованиями СНиП 12-03-2011 и 12-04-2002.
- 6.2 Производить визуальный контроль целостности лакокрасочного покрытия, выявление остаточной деформации, а также состояние сварных соединений конструкций с периодичностью не реже одного раза в год.


					03.22-013/000.0Д						
Изм.	Лист	№ докум.	Подп.	Дата							
Исп	олнил	Морозихин		Cδ 11.03.2	Рекламно-информационная	Стадия	Лист	Листов			
Пр	ов.				вывеска "VOXYS"		2	15			
Γν	1Π				ONDECKE ADVIZ		2	כו			
Нач	н. КБ										
Н.контр.			Общие данные								
Утв	β.						ксинит				

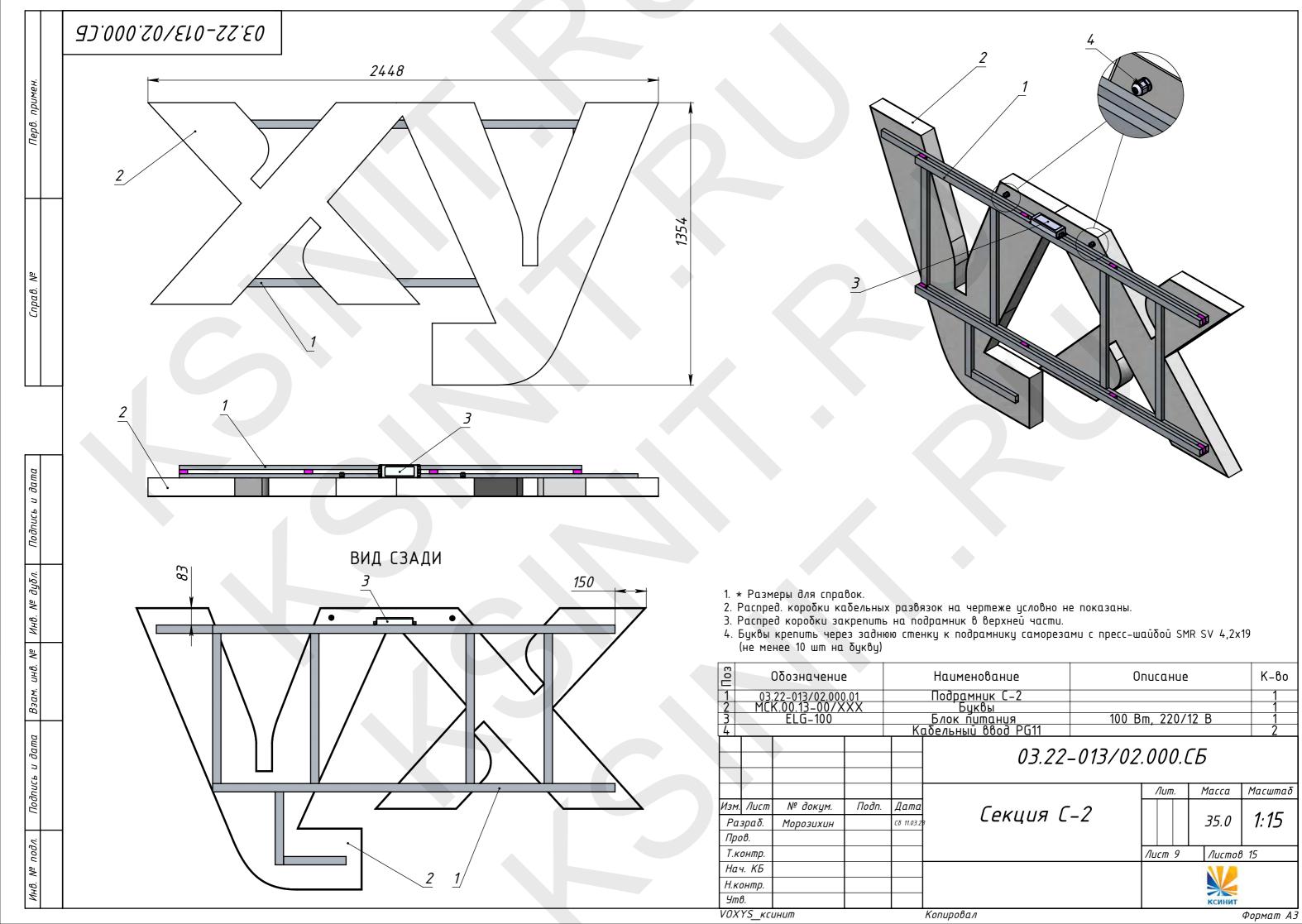
VOXYS_ксинит Копировал Формат АЗ

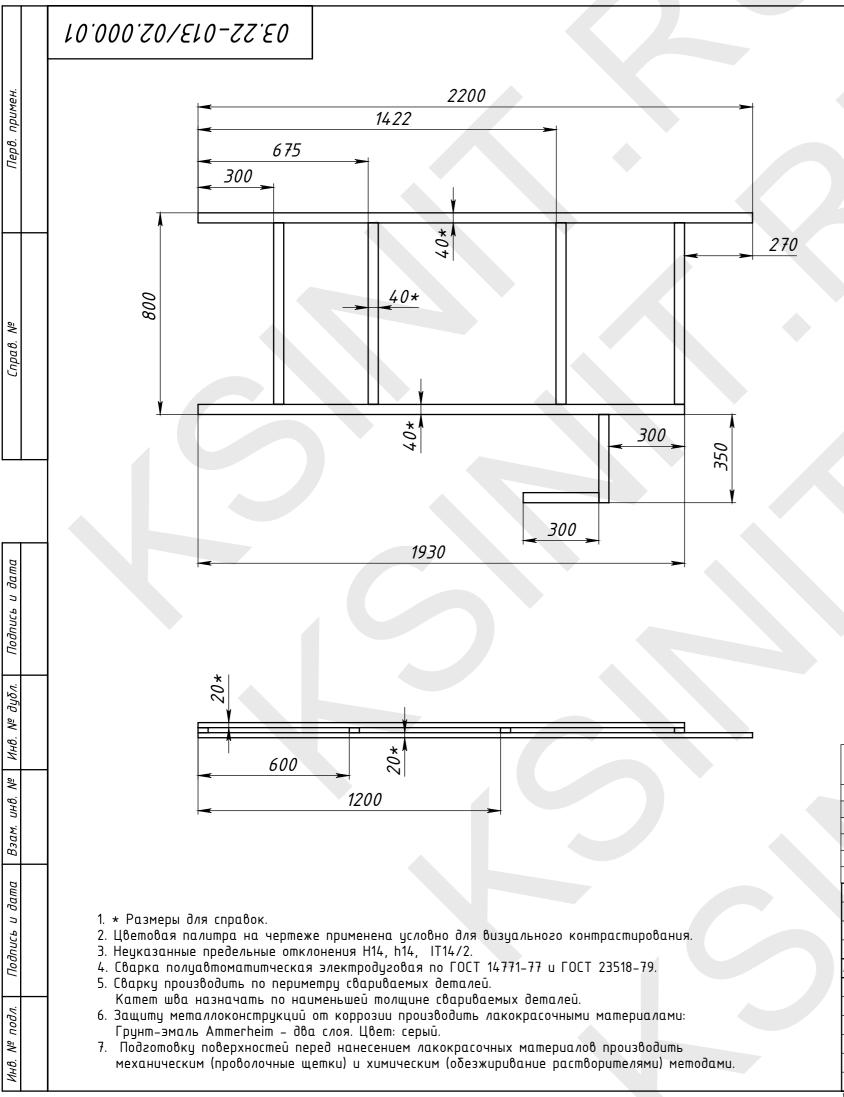


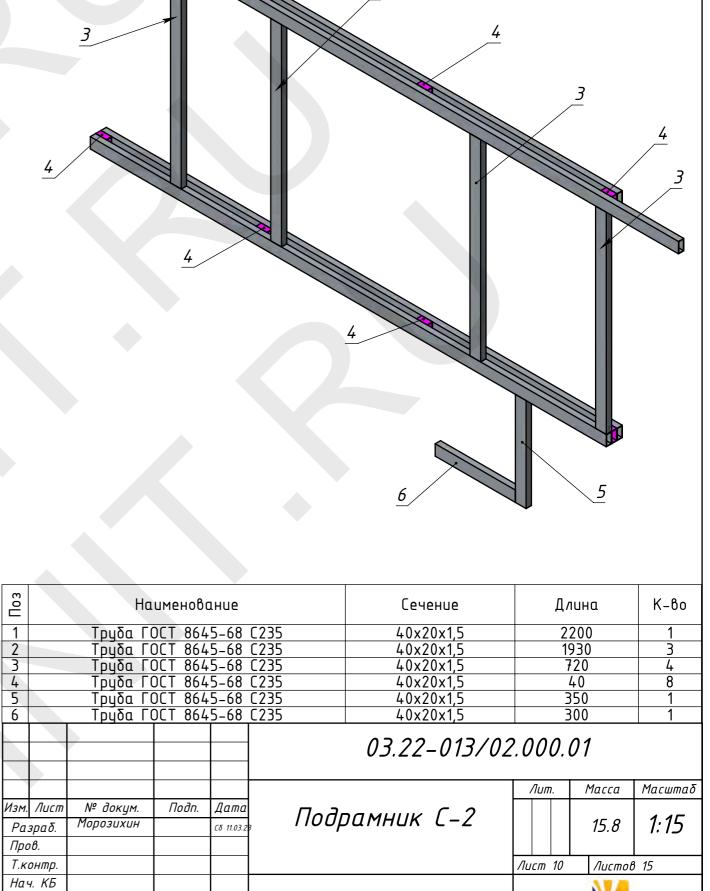




Формат АЗ

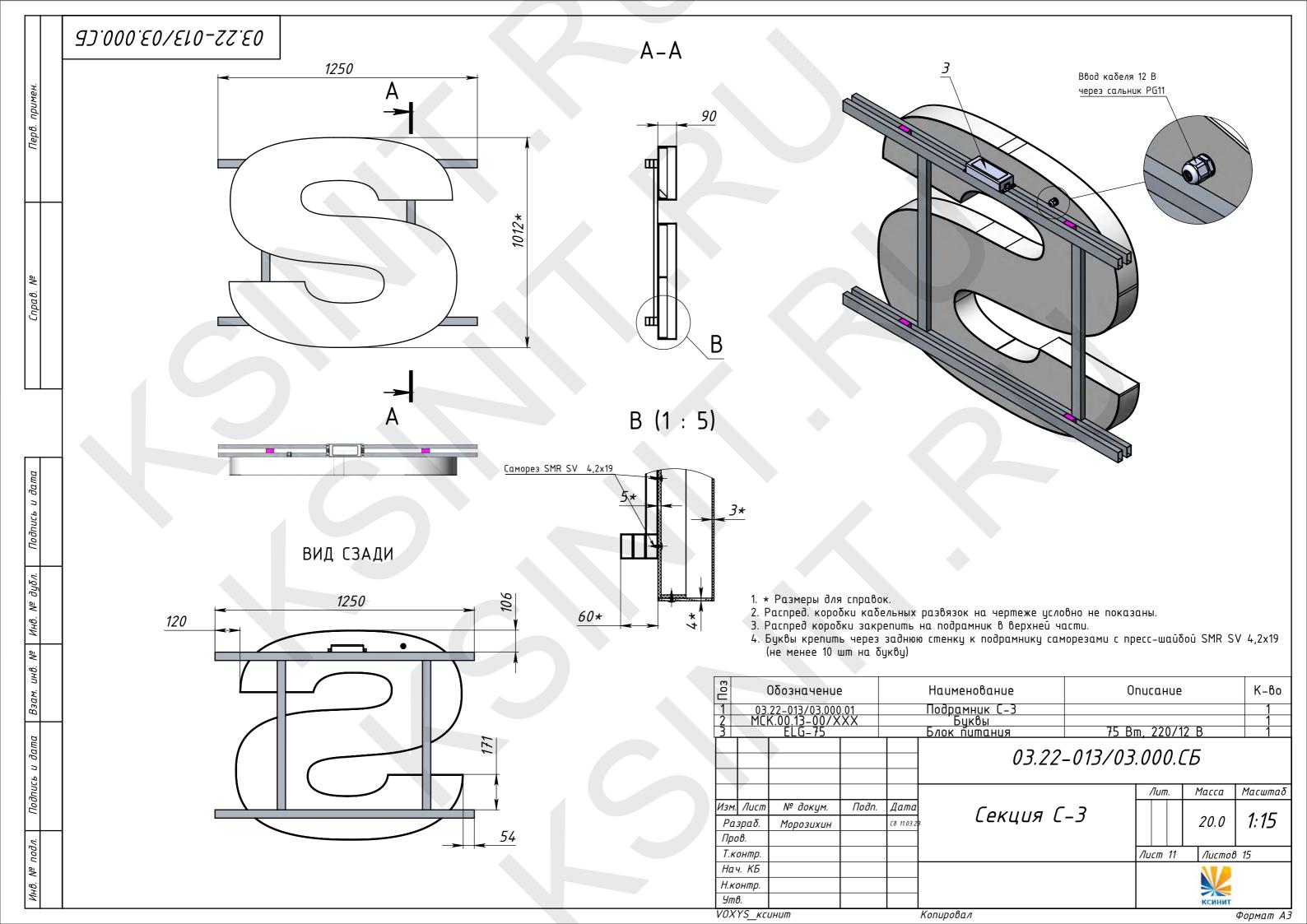


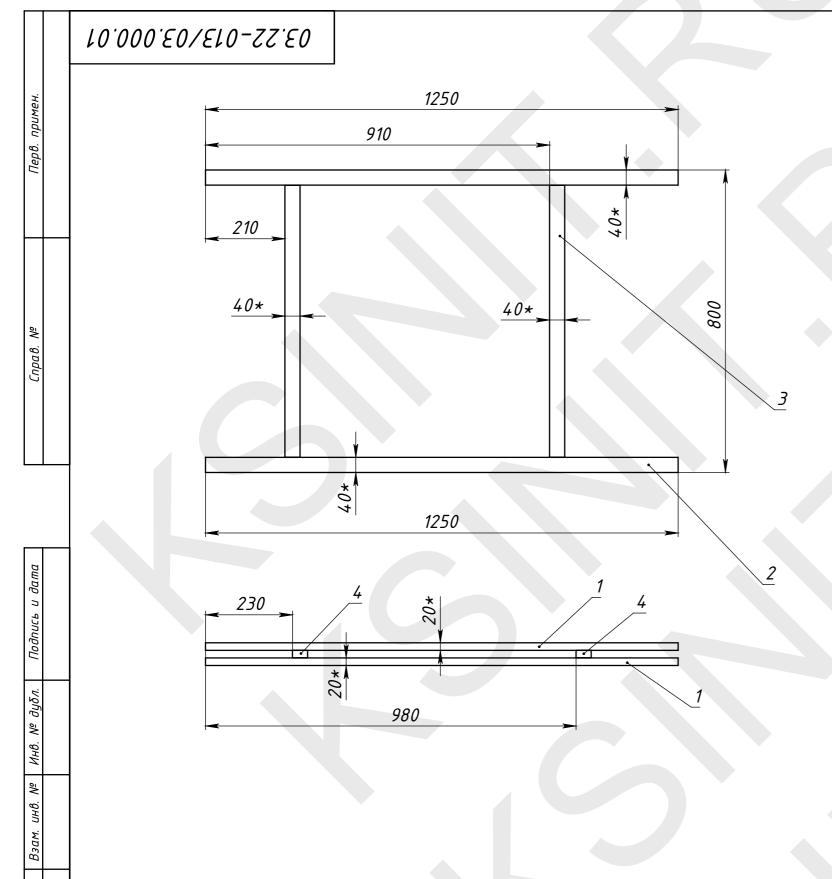




Копировал

Формат АЗ

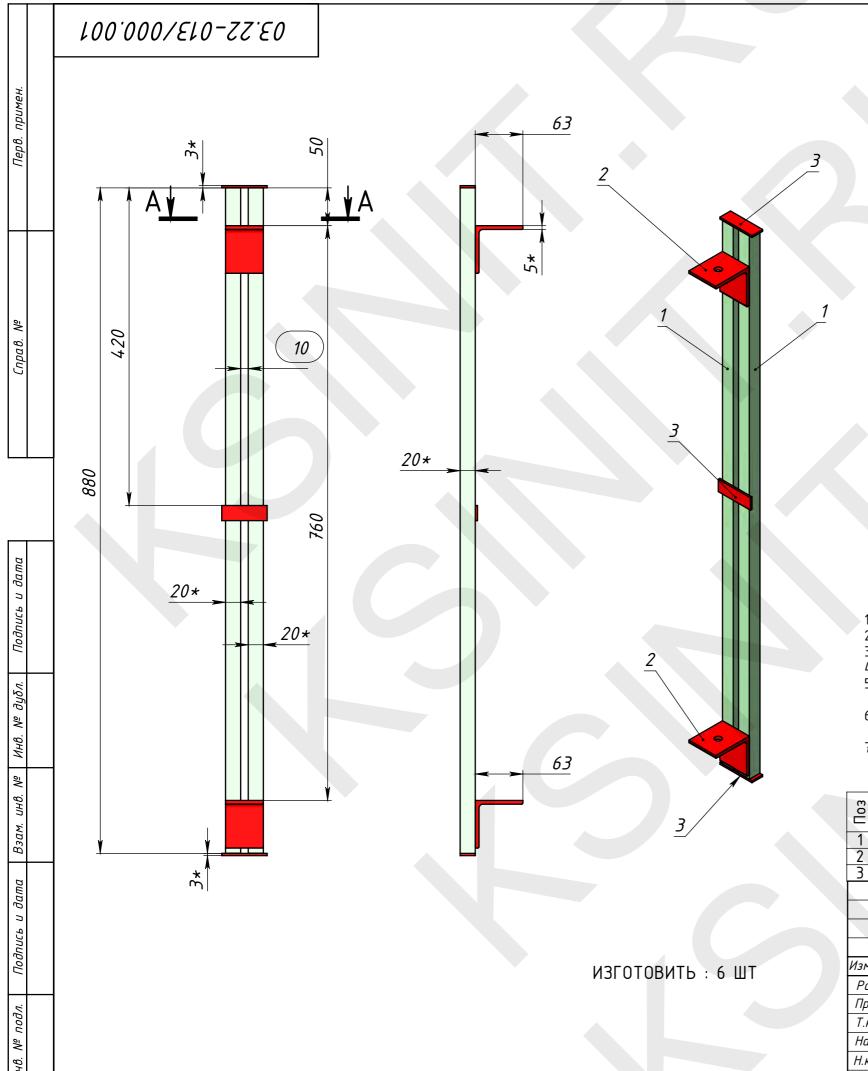




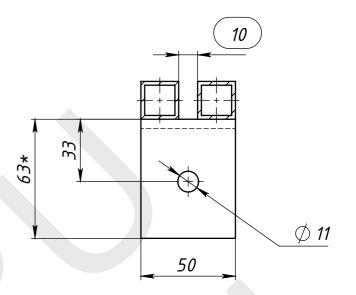
VOXYS_κсинит Κοπυροβα*π*

Н.контр. Утв.

Формат АЗ


Наименование Сечение Длина К-во Τρηδα ΓΟCΤ 8645-68 C235 40x20x1,5 1250

- 1. * Размеры для справок.


- * Размеры для справок.
 Цветовая палитра на чертеже применена условно для визуального контрастирования.
 Неуказанные предельные отклонения Н14, h14, IT14/2.
 Сварка полуавтоматитеская электродуговая по ГОСТ 14771-77 и ГОСТ 23518-79.
 Сварку производить по периметру свариваемых деталей.
 Катет шва назначать по наименьшей толщине свариваемых деталей.
 Защиту металлоконструкций от коррозии производить лакокрасочными материалами: Грунт-эмаль Аттегней два слоя. Цвет: серый.
 Подготовку поверхностей перед нанесением лакокрасочных материалов производить механическим (проволочные щетки) и химическим (обезжиривание растворителями) методами.

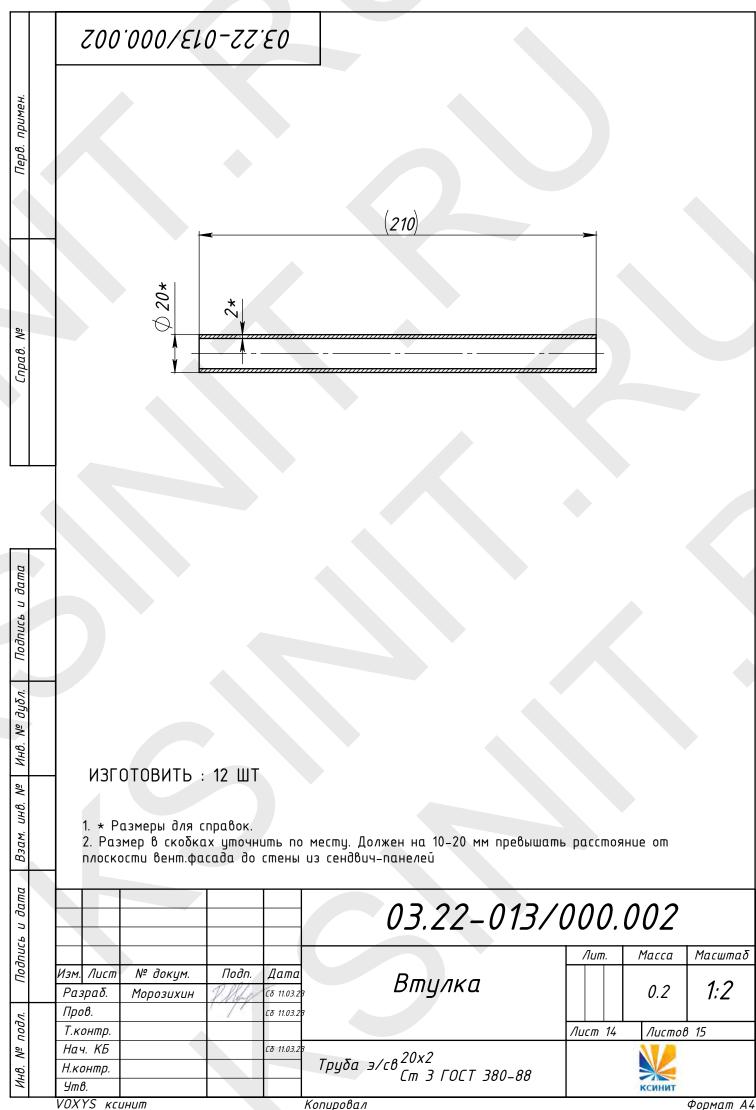
2		Τργδα Γ(OCT 864	5-68	C235	40x2	20x1,5	12	250	2	
3		Τρίδα Γί	OCT 864	5-68	C235	40x2	20x1,5	7	20	2	
4		Τρίδα Γί	OCT 864	5-68	C235	40x2	20x1,5		4 0	4	
						03.22-013/03.000.01					
								Лит.	Масса	Масштаδ	
Изм.	Лист	№ докум.	Подп.	Дата	Подг		<i>C</i> 3			4.40	
Pa:	зраб.	Морозихин		Cδ 11.03.2.	HITOUL	амник	L-J		8.8	1:10	
Про	в.										
T.ĸ	онтр.							Лист 12	Листов	15	
Нαч	н. КБ										
Н.к	онтр.										
Ут									КСИНИТ		
/0X	YS_kc	инит			Копировал					Формат АЗ	

Поз

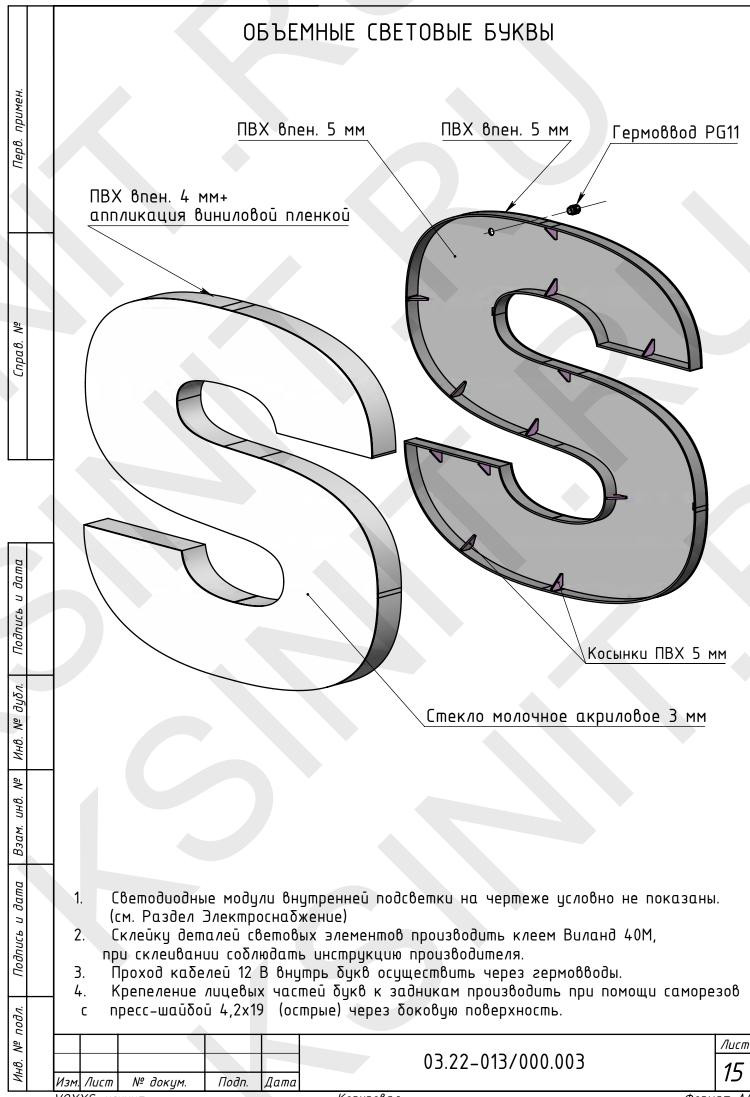
A-A (1 : 2)

- 1. * Размеры для справок.
- 2. Цветовая палитра на чертеже применена условно для визуального контрастирования. 3. Неуказанные предельные отклонения Н14, h14, IT14/2. 4. Сварка полуавтоматитческая электродуговая по ГОСТ 14771-77 и ГОСТ 23518-79.

- 5. Сварку производить по периметру свариваемых деталей.


Катет шва назначать по наименьшей толщине свариваемых деталей.

- 6. Защиту металлоконструкций от коррозии производить лакокрасочными материалами: Грунт-эмаль Аттегнеіт - два слоя. Цвет: серый
- 7. Подготовку поверхностей перед нанесением лакокрасочных материалов производить механическим (проволочные щетки) и химическим (обезжиривание растворителями) методами.


Поз		На	именово	іние		Сечение	Д/	ина	К-во
1		Τργδα Γί	OCT 863	9-82	C235	20x20x2	8	180	2
2		Уголок Г	OCT 850	9-93	C235	63x5	!	50	2
3		Ποποςα ε/ι	к ГОСТ	103-7	6 C235	20x3		60	3
						03.22-013/0	00.00	1	
							Лит.	Масса	Масштаδ
Изм.	Лист	№ докум.	Подп.	Дата		Стойка			
Pa:	зраб.	Морозихин		Cδ 11.03.2.	3	LIIIUUKU		2.5	1:5
Про	β.								
T.K	онтр.						Лист 13	Листов	15
Нач	н. КБ							NV.	
Н.к	онтр.								
Ут	З.							КСИНИТ	

VOXYS_ксинит

Копировал

Копировал VOXYS_ксинит

ИП Форопонов Евгений Анатольевич
Расчетно-пояснительная записка
РЕКЛАМНО-ИНФОРМАЦИОННАЯ ВЫВЕСКА "VOXYS"
Габаритные размеры: 6000х970 мм Адрес: Самарская область, г. Тольятти, ул. Карла Маркса, 57
Шифр 03.22-013/РР
Выполнил Форопонов Е.
2022 z.

Перв. применен

Cripaß. Nº

Подпись и дата

№ дубл.

No UHB

UHB

Взамен і

Подпись и дата

инв. № подл.

РАСЧЕТ КОНСТРУКЦИИ РЕКЛАМНО-ИНФОРМАЦИОННОЙ УСТАНОВКИ 1. Исходные данные для проектирования

- . Район строительства: Самарская область, г. Тольятти
- 2. Конструкция фасадная вывеска.
- 3. Основание для разработки проекта
- 4. Конструктивное решение

Информационная конструкция представляет собой световые буквы, расположенные на монтажной металлоконструкции

Габаритные размеры 6000х970х90мм

Лицевая поверхность — Акриловое стекло 3 мм

Задняя стенка: ПВХ вспенен. 5 мм Боковая поверхность: ПВХ вспенен 4 мм

Тип подсветки: светодиодные модули (внутренняя) Напряжение питания светодиодных модулей: 12 В.

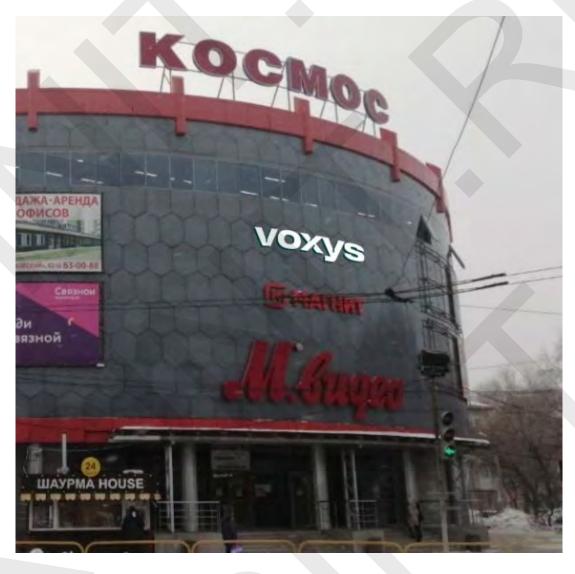


Рис. 1 Дизайн-макет

					03.22-013/PF)			
Изм.	Лист	№ докум	Подпись	Дата					
Разр	гаδ.	Форопонов		₿c 17.04.22		Лит	Лист	Листов	
Прове	р .				Рекламно-информационная	РД	2	15	
	Провер.				вывеска	ИП Форопонов Евгений			
Н кон	нтр.				"VNXYS		1. А <i>натоль</i>		
Утв.	·				, 5, (15	·	11141110110	200 /	

2. Исходные данные для расчета

- 1) Высота вывески над уровнем земли: z= 12 м
- 2) Площадь букв ACTURY: 4 кв.м

3. Определение ветровой нагрузки

Для вычисления нагрузки согласно (1) приняты следующие данные:

Тольятти Нормативное значение ветрового давления Тип местности – В

1. Габаритные размеры установки:

III ветровой рай—н; IV—снеговой рай—н $W_0 = 38 \text{ кг/м}^2 \text{ (табл. 11.1 {1});}$

 L_{n} = 9.0 m , H_{n} = 1,14 m

Нормативное значение средней составляющей ветровой нагрузки:

$$W_m = W_0 * k * c_x$$
, 2de

 W_0 – нормативное значение ветрового давления,

 k_Z — коэффициент принимается в зависимости от типа местности и эквивалентной высоты z по табл. 11.3 [1]

$$k_Z = k_{10} * \left(\frac{z}{10}\right)^{2\alpha} = 0.7$$

 $k_{10}\text{=}0.65$; z=12 ; $\alpha\text{=}0.2$

Подпись и дата

№ дубл.

No UHB.

дата

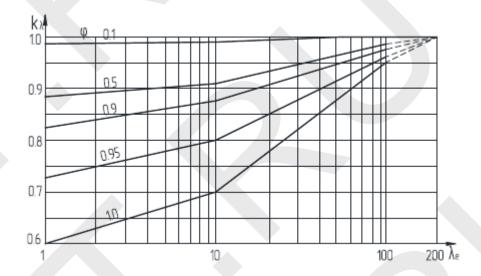
подл

NHB.Nº

 c_x — аэродинамический коэффициент для рекламных щитов, поднятых над землей.

$$c_x = 2.5 * k_\lambda$$

Коэффициент проницаемости:


$$\phi = \frac{S_{\mathcal{D}}}{L_n * H_n} = \frac{4}{6.0 * 0.97} = 0.7$$

$$\lambda = \frac{L_n}{H_n} = \frac{6}{0.97} = 6.2$$

Относительное удлинение:

$$\lambda_{\scriptscriptstyle eta} = \lambda/2 = rac{6.2}{2} = 3.1$$
 (табл. Д.10 {1}) $k_{\lambda} = 0.87$ (рис. Д.23 {1})

Γ					
ŀ					
l					
ſ	Изм.	Лист	№ докум	Подпись	Дата

Аэродинамический коэффициент

$$c_{\scriptscriptstyle \chi}=$$
 2,5 * $k_{\lambda}=$ 2.2 (п. Д.1.1 {1})
$$W_m=W_0*k*c_{\scriptscriptstyle \chi}=38*0.65*2,2=54~{\rm Kz/M^2}$$

Нормативное значение пульсационной составляющей ветровой нагрузки:

$$W_p = W_0 * \xi * \nu$$

қ- коэффициент пульсаций давления ветра на расчетной высоте

$$\xi_z = \xi_{10} * (\frac{z}{10})^{-\alpha} = 1.0$$

 ξ_{10} =1.06

Подпись и дата

№ дубл.

No UHB

Подпись и дата

подл

NHBNO

v — коэффициент пространственной корреляции пульсаций давления ветра, определяющиеся для расчетной поверхности, на которой учитывается корреляция пульсаций (получен линейной интерполяцией)

В данном случае расчетная поверхность расположена параллельно основной координатной плоскости ZOY (таблица 9, 10) [1]

χ – высота установки (таблица 10) [1]

ρ – длина установки (таблица 10) [1]

ν = 0.9 (maδλυμα 9, 10) [1]

$$W_p = W_m * \xi * \nu = 54 * 1.0 * 0.9 = 49 \text{ Kz/M}^2$$

Полная приведенная расчетная ветровая нагрузка:

$$W_1=(W_m+W_p)*y$$
, zde

у=1,4 — коэффициент надежности по нагрузке (п.б.11) [1]

						Лист
					03.22-013/PP	/.
Изм.	Лист	№ докум	Подпись	Дата		4

$$W_1 = (54 + 49) * 1,4 = 144 \text{ Kz/m}^2$$

Полная расчетная ветровая нагрузка рекламную конструкцию:

$$W_{\text{Ветр}} = W_1 * S = 144 * 4 = 576$$
 кас

4. Определение снеговой нагрузки

Полное расчетное значение снеговой нагрузки S на горизонтальную проекцию покрытия следует определять по формуле:

$$S = S_0 * A * \gamma_{f2}$$

где S_0 — нормативное значение веса снегового покрова на 1 м 2 горизонтальной поверхности земли, определяется по формуле п. 10.1

$$S_0 = c_e * c_t * \mu * S_g$$

 S_g = $20*10^3\ \Pi a$ – вес снегового покрова на 1 м 2 горизонтальной поверхности для IV—снегового района

 μ — коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый в соответствии с пл.10.4

 $\mu=1$

Подпись и дата

№ дубл.

No UHB.

дата

поди

WHB.Nº

 c_e — коэф., учитывающий снос снега с покрытий здания под действием ветра или иных факторов

$$c_e = (1.2 - 0.4 * \sqrt{k})(0.8 + 0.002 * l_c)$$

$$k_Z = k_{10} * \left(\frac{z}{10}\right)^{2\alpha} = 0.65 * \left(\frac{12}{10}\right)^{2*0.15} = 0.7$$

для типа_местности "В" : α =0.15; k_{10} =0,65 ;

z=12— высота расчетной плоскости от уровня земли

$$l_c = 2 * b - \frac{b^2}{l} = 2 * 0.1 - \frac{0.1^2}{6} = 0.2$$

l=6 м – длина установки

b=0,1 м – приведенная ширина установки

$$c_e = (1.2 - 0.4 * \sqrt{k})(0.8 + 0.002 * l_c) = (1.2 - 0.4 * \sqrt{0.7})(0.8 + 0.002 * 0.2)$$

= 0.7

с+=1 – термический коэффициент

$$S_0 = c_e * c_t * \mu * S_g = 0.7 * 1 * 1 * 2 * 10^3 = 1400 //a$$

 $\Upsilon_{\text{f2-}}$ коэффициент надежности по снеговой нагрузке

 $A=b*L=0.1*6=0.6 \ m^2-$ площадь боковой поверхности, воспринимающей снеговую нагрузку

Расчетная снеговая нагрузка на информационную установку:

						Лист
					03.22-013/PP	_
Изм.	Лист	№ докум	Подпись	Дата		

$$S = S_0 * A * \gamma_{f2} = 1400 * 0.6 * 1,4 = 1200 \ H = 120 \$$
кгс

5. Расчетный случай. Секция С-2

Расчет будем производить относительно секции С-2. При всех равных условиях эта секция имеет наибольшую площадь ветрового сопротивления.

$$S_{\delta y \kappa \delta} = 1.5 \text{ m}^2$$

Подпись и дата

№ дубл.

No UHB.

Подпись и дата

NHBNO

$$W_{\it бетр} = W_1 * S = 144 * 1,5 = 216$$
 кас

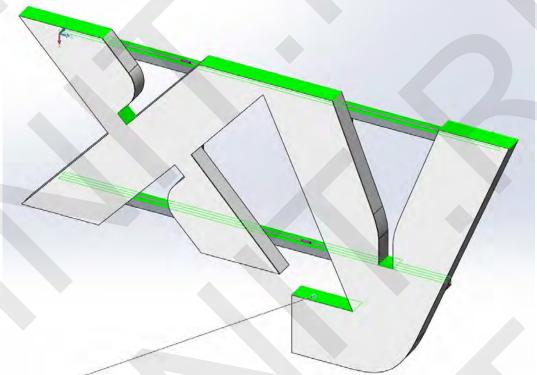


Рис 2 Площадь боковой поверхности, воспринимающей снеговую нагрузку

 $A=0,3 \, \text{м}^2$ (площадь поверхности, воспринимающей снеговую нагрузку

$$S = S_0 * A * \gamma_{f2} = 1400 * 0.3 * 1,4 = 588 \ H = 60 \ \textit{K2C}$$

Расчет на совместное действие ветровой, снеговой и весовой нагрузок проводится на основе метода конечных элементов с применением десяти узлового элемента в форме тетраздра с серединными узлами, каждый из узлов которого имеет шесть степеней свободы. Расчетная программа: COSMOSWORKS.

Приложенные нагрузки:

- 1) Ветровая нагрузка: 216 кгс
- 2) Снеговая нагрузка 60 кгс
- 3) Macca: 30 kz+25kz =35 kz.

						Лист
					03.22-013/PP	_
Изм.	Лист	№ докум	Подпись	Дата		D

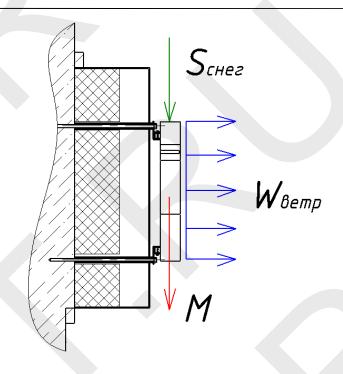


Рис. 2 Расчетная схема

5.1. Анализ результатов расчета

Приложение 01- схема нагружения

Подпись и дата

№ дубл.

No UHB.

UHB

Подпись и дата

поди

NHBNO

Приложение 02- сетка конечных элементов

Приложение 03- распределение возникающих напряжений

Приложение 04- распределение перемещений элементов

Приложение 05- реакции в точках крепления

В приложении ОЗ приведена иллюстрация распределения эквивалентных напряжений, построенная на основе теории Мизеса.

Из результатов расчета следует, что максимальные эквивалентные напряжения в металлоконструкции щита, составляющие 1320 кгс/см2, не превышают расчетного сопротивления выбранной марки стали Ry=2350 кгс/см2 и расчетного сопротивления металла сварных швов Rwf=1150 кгс/см2 согласно СНиП II—23—81* "Стальные конструкции". В приложении 04 приведена иллюстрация распределений перемещений узлов металлоконструкции под действием расчетных нагрузок. Максимальные перемещения составляют 5 мм в правой консоли

При действии расчетных нагрузок максимальное перемещение узлов: 1) для консоли —— Fmax=5 мм , F_{max}/L= 5/850=0.005 < 1/75

Следовательно, нормативная жесткость конструкции обеспечена.!!!!

В приложении 05 приведена иллюстрация возникающих сил реакций в местах креплений.

						Лист
					03.22-013/PP	7
Изм.	Лист	№ докум	Подпись	Дата		/

Максимальные силы реакций:

N=97,8 кгс=980 H (осевая нагрузка) —не превышает 3200 H!!! для KD 8

 $V_{rez} = \sqrt{\mathbf{55}, \mathbf{9}^2 + \mathbf{1}^2} = \mathbf{55}, \mathbf{9}$ кгс=559 H, (поперечная нагрузка)

Tun			KD3	KD4	KD5	KD6	KD8
Размер резьбы	[M]	M3	M4	M5	M6	M8	
Рекомендуемые нагрузки в соответствующ <mark>ем ма</mark> териале осно	вы Frec ²⁾						
Максимально возможная рекомендуемая нагрузка ³⁾		[KH]	0,35	0,50	1,50	1,90	3,20
Гипсокартон	12,5 MM	[KH]	0,05	0,10	0,15	0,20	0,25
Ориентированно-стружечная плита (OSB)	15 mm	[ĸH]	0,35	0,40	0,40	0,50	0,60
Ориентированно-стружечная плита (OSB)	22 MM	[KH]	4	-		0,80	1,20

- 1) С учетом коэффициента запаса прочности 4.
- 2) Данные действительны при растягивающей нагрузке, поперечной нагрузке и нагрузке под произвольным цглом
- 3) Если разрыв материала основания не возможен.

поди

NHBNO

Ссылка на источник: https://fischer-rus.ru/shop/item/samoustanavlivayushijsya-dyubel-fischer-kd8-m8h100-ocinkovannaya-stal-080178

						Лист
					03.22-013/PP	Q
Изм.	Лист	№ докум	Подпись	Дата		U

		<u>ИСХОДНЫЕ ДАННЫЕ:</u> Осевое усилие на шпильку: Fw = 980 H. Поперечное усилие шпильку: Qw = 559 H.							
		Марка стали шпильки: 5.6. Допускаемое напряжение: – на растяжение: [σ]20 = 150 МПа; – на срез: [т]20 = 75 МПа. Номинальный диаметр резьбы болта: D = 8 мм. Шаг резьбы болта: P = 1.25 мм.							
		Диаметр резьбы по впадинам: d3 = 6.47 мм. Коэффициент полноты резьбы: болта: K1 = 0.75; гайки: K1 = 0.875. Коэффициент деформации витков: Km = 0.6. Коэффициенты наличия смазки: ζ = 0.18; ζ 1 = 0.37. РЕЗУЛЬТАТЫ РАСЧЕТА Шпильки: Площадь сечения шпильки: Аw = ¼π(d32 - d2) = ¼π(6.472 - 02) = 32.9 мм2.							
Взамен инв. 📗 № инв. № дубл. Подпись и дата		Площадь сечения тела болта: AD = ¼π(D2 - d2) = ¼π(82 - 02) = 50.2 мм2. Момент сопротивления сечения кручению: Ww = 1/16πD3 (1 - d4/D4) = 1/16π*6.473 (1 - 04/6.474) = 53.2 мм3. Крутящий момент при затяжке: Мк = ζFwD/z = 0.18*980*8/(1) = 1411.2 Hмм. Момент на ключе для обеспечения усилия Fw: Мкл = ζ1FwD/z = 0.3*980*8/(1) = 2900.8 Hмм = 0.3 кгс*м (без смазки). Напряжения среза по резьбовой части: тw = Qw/(Awz) = 559/(32.9x1) = 17 МПа < 75 МПа — выполнено. Напряжения среза тела шпильки: тw = Qw/(ADz) = 559/(50.2x1) = 11.1 МПа < 75 МПа — выполнено. Напряжения растяжения в шпильке: σw = Fw/(Awz) = 980/(32.9x1) = 29.8 МПа < 150 МПа — выполнено. Напряжения среза резьбы в шпильке: τр = Fw/(πd3hzK1Km) = 980/(π*6.47*8*1*0.75*0.6) = 13.4 МПа < 75 МПа — выполнено.							
Подпись и дата		Напряжения кручения в шпильке: \(\tau \) = Mk/Ww = 1411.2/53.2 = 26.5 МПа < 75 МПа — выполнено. \(\frac{Pesynьmamы pacчema zaek}{Hanpsжehus cpesa pesьбы \(\text{b} \) zaūke: \(\tau \) = Fw/(\(\pi \) DhzK1Km) = 980/(\(\pi \) *8*8*1*0.875*0.6) = 9.3 МПа < 75 МПа — выполнено.							
Инв.№ подл.		6. Антикоррозийная защита. Лист Изм. Лист № докум Подпись Дата Дата							
	•								

Расчет шпильки М8

- 6.1. Защиту металлоконструкций от коррозии производить на заводе-изготовителе
- 6.2. Поверхности металлоконструкций должны иметь третью степень очистки от окислов по ГОСТ 9.402–80* и первую степень обезжиривания. Работы по окраске конструкций производить в соответствии со СНиП 3.04.03–85 "Правила производства и приемки работ. Защита стальных конструкций от коррозии" и ГОСТ 12.3.035–84 "Работы окрасочные. Требования безопасности". Качество лакокрасочного покрытия должно соответствовать V классу по ГОСТ 9.032–74*.

7. Сервисное обслуживание рекламной установки

Сервисное обслуживание конструкции осуществляется силами заказчика.
Обязателен ежегодный технический осмотр конструкции с проверкой состояний сварных швов, механической целостности и гидроизоляции конструкции.

Не допускается без технической экспертизы и проведения расчетов дополнительно нагружать конструкцию, производить изменения в монтажных креплениях конструкции, изменять её силовую схему.

Замену либо обслуживание электротехнической части производить при помощи квалифицированных специалистов.

8. Вывод:

Подпись и дата

№ дубл.

No UHB.

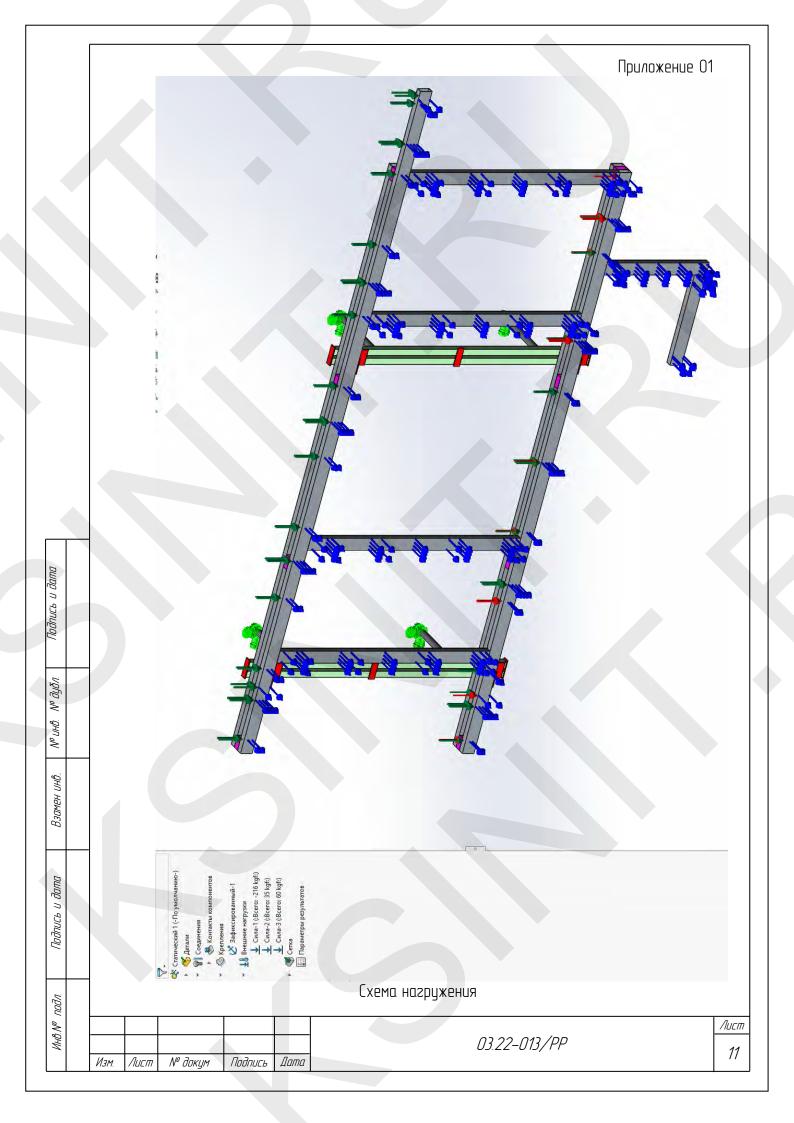
UHB

дата

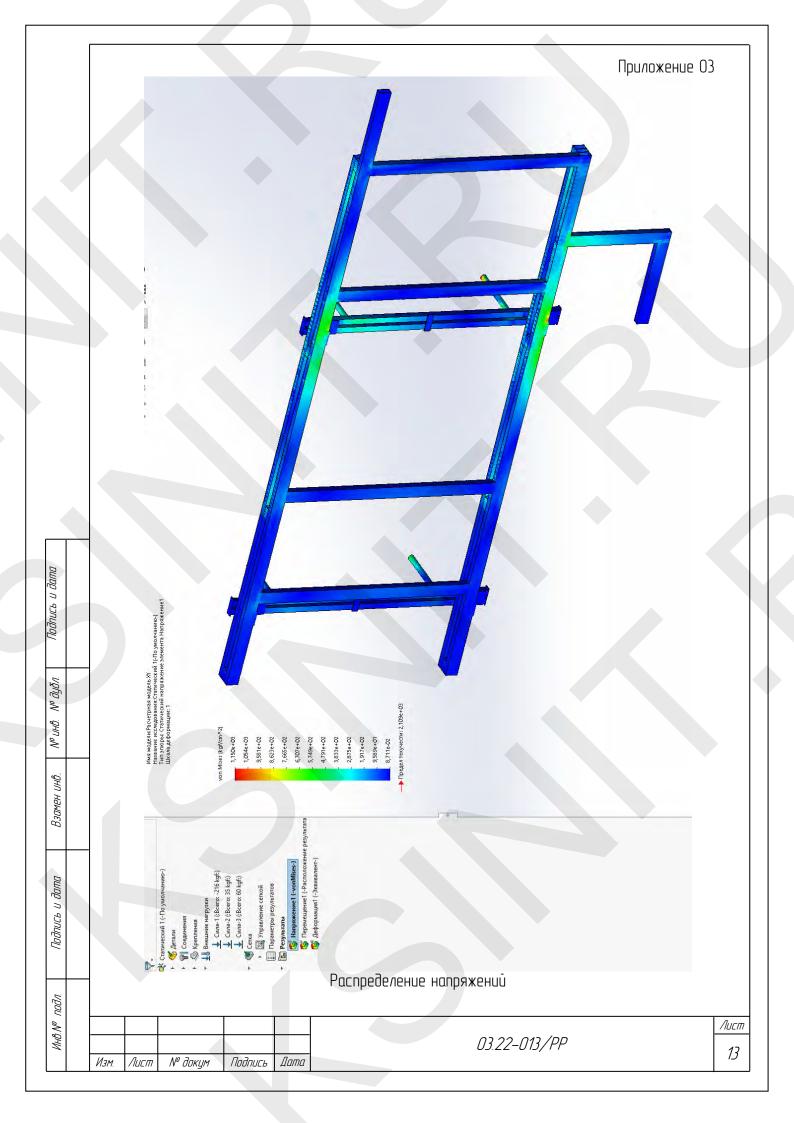
поди

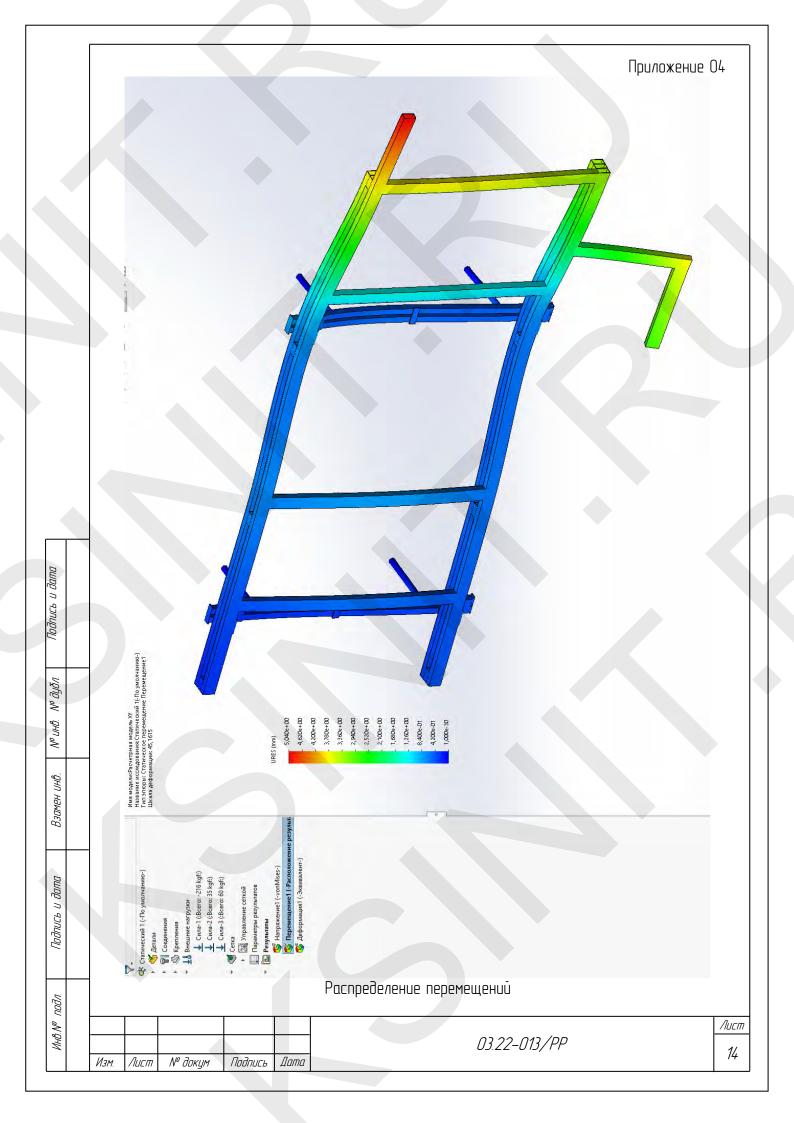
NHBNO

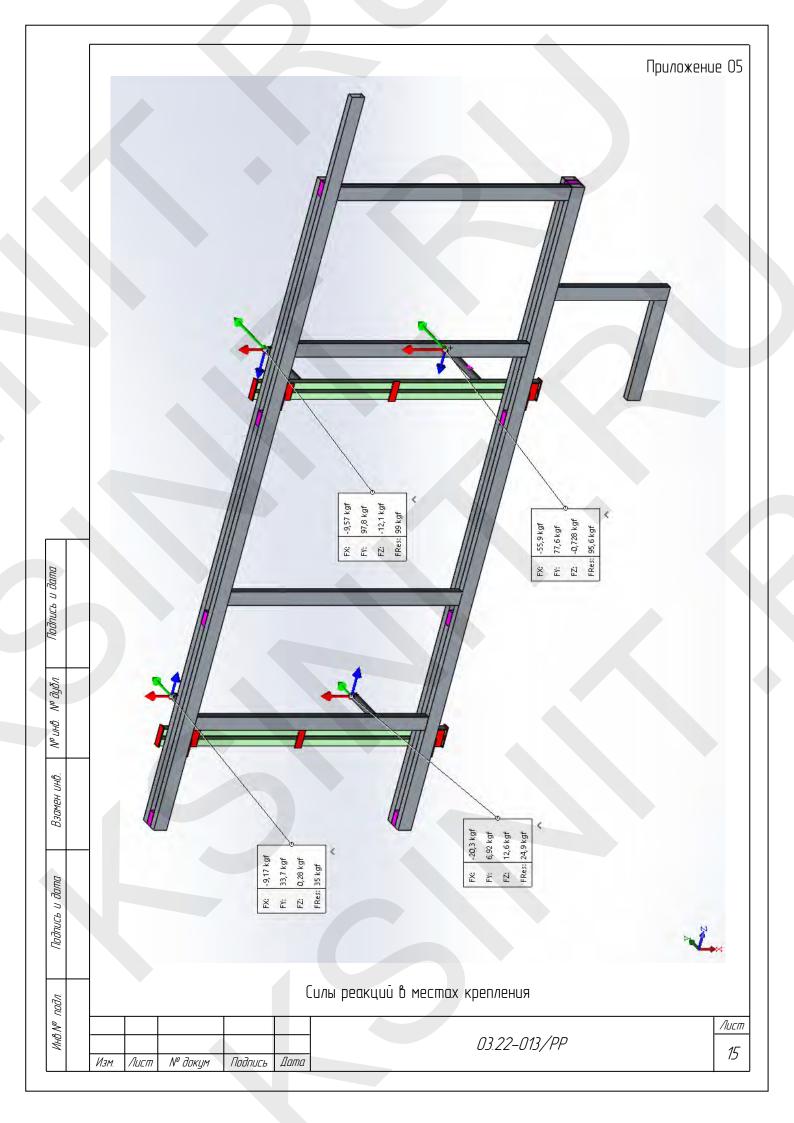
Проведенные расчеты показали, что основные несущие элементы конструкций рекламной установки удовлетворяют требованиям СНиПов и ГОСТов на жесткость и прочность. Разработанная проектная документация соответствует техническим условиям и требованиям.


8 Список используемой литературы:

- [1] СНиП 2.01.07-85 "Нагрузки и воздействия" СП 20.13330.2016 (2016);
- [2] СНиП II–23–81 "Стальные конструкции" (1990);
- [3] -Алямовский А. А. SolidWorks/COSMOSWorks. Инженерный анализ методом конечных элементов. М.: ДМК Пресс,2004. 432 с.
- [4] Fischer Техническое руководство по анкерному крепежу
- [5] ГОСТ Р 52627—2006. Болты, винты и шпильки. Механические свойства и методы испытаний.


Изм. Лист № докум Подпись Дата


03.22-013/PP


Лист

