

РАБОЧАЯ ДОКУМЕНТАЦИЯ ФАСАДНАЯ РЕКЛАМНО-ИНФОРМАЦИОННАЯ ВЫВЕСКА "OZON"

Габаритные размеры: 2065x500 мм ТИПОВОЙ ПРОЕКТ

ШИФР: 01.24-434/500

Выполнил:

Морозихин Р.В.

Представитель заказчика: _

ВЕДОМОСТЬ ОСНОВНЫХ КОМПЛЕКТОВ

Обозначение	Наименование	Примечаниие
01.24-434/500	Конструктивные решения	
01.24-434/500.PP	Расчетно-поянительная записка	
01.24-434/500.30M	Электроснабжение	

ВЕДОМОСТЬ ЧЕРТЕЖЕЙ ОСНОВНОГО КОМПЛЕКТА ДОКУМЕНТАЦИИ

Обозначение	Наименование	/lucm
	Общие данные	2
	Οδιμυύ θυθ	3
	Вывеска. Сборочный чертеж	4-5
	Подрамник вывески	6

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование параметра и единицы измерения	Значение
Длина, мм	2065
Высота, мм	500
Толщина, мм	160
Масса, кг	14
Номинальное напряжение сети, В	~220
Номинальная частота сети, Гц	50
Мощность установл, Вт	60

ВЕДОМОСТЬ ССЫЛОЧНЫХ И ПРИЛАГАЕМЫХ ДОКУМЕНТОВ

Обозначение	Наименование	Примечание
	Ссылочные документы	
СП.20.13330.2016	Актуализированная редакция СНиП 2.01.07-85* "Нагрузки и воздействия"	
СП.20.13330.2017	Актуализированная редакция СНиП II-23-81* "Стальные коснтрукции"	
СП.48.13330.2019	СНиП 12-01-2004 "Организация строительства"	
СП 53-101-98	Изготовление и контроль качества стальных строительных конструкций.	
СП 28.13330.2017	«СНиП 2.03.11-85 Защита строительных конструкций от коррозии»	
	Прилагаемые документы	

Технические решения, принятые в рабочем проекте, соответствуют требованиям экологических, санитарно-гигиенических, противопожарных и других норм, действующих на территории Российской Федерации и обеспечивают безопасную для жизни людей эксплуатацию изделия при соблюдении предусмотренных рабочими чертежами мероприятий.

Главный инженер проекта / Мал

Морозихин Р.В.

ОБЩИЕ ЧКАЗАНИЯ

1. ИСХОДНЫЕ ДАННЫЕ:

- 1.1. Адрес объекта: Типовой проект для VI-ого ветрового региона
- 1.2 Техническое задание.
- 1.3 Проектная документация разработана в соответствии с нормативными документами по строительству, действующими на территории РФ.

2. КОНСТРУКТИВНОЕ РЕШЕНИЕ:

Корпус объемных световых букв выполнен из молочного жидкого акрила 3 мм (лицевая часть), и листового алюминия 0,6 мм (боковая часть) с накатанной виниловой пленкой с "УФ"-печатью текстуры "зебра".

Задник букв выполнен из прозрачного монолитного поликарбоната 3 мм. Соединение корпусов букв и задников осуществляется при помощи саморезов 2,2х13 DIN 7049 в специально приклеенные по периметру задника бобышки из вспененного ПВХ 8 мм.

Подложка представляет собой декоративно-художественный элемент из алюминиевой композитной панели АКП 3 мм с прямой УФ печатью, расположенную на сварном каркасе из трубы 20x20x1,5 ГОСТ 8639-82 Ст3. Каркас окрашен на заводе-изготовителе.

Буквы через задники крепятся к подрамнику через дистанционные втулки самонарезающими винтами 4,8х38 DIN 7504K. Тип подсветки — внутренняя светодиодная комбинированная: засветка лицевой части букв+ контражур

Монтаж осуществляется прямым способом на фасад здания при помощи универсальных анкеров HILTI HRD 10x100 или аналогов (при условии ,что базовым материалом стены является кирпич или бетон). В иных случаях тип крепежа выбирается на основании разрабатываемого проекта, исходя из конкретных технических условий, требований и исходных данных.

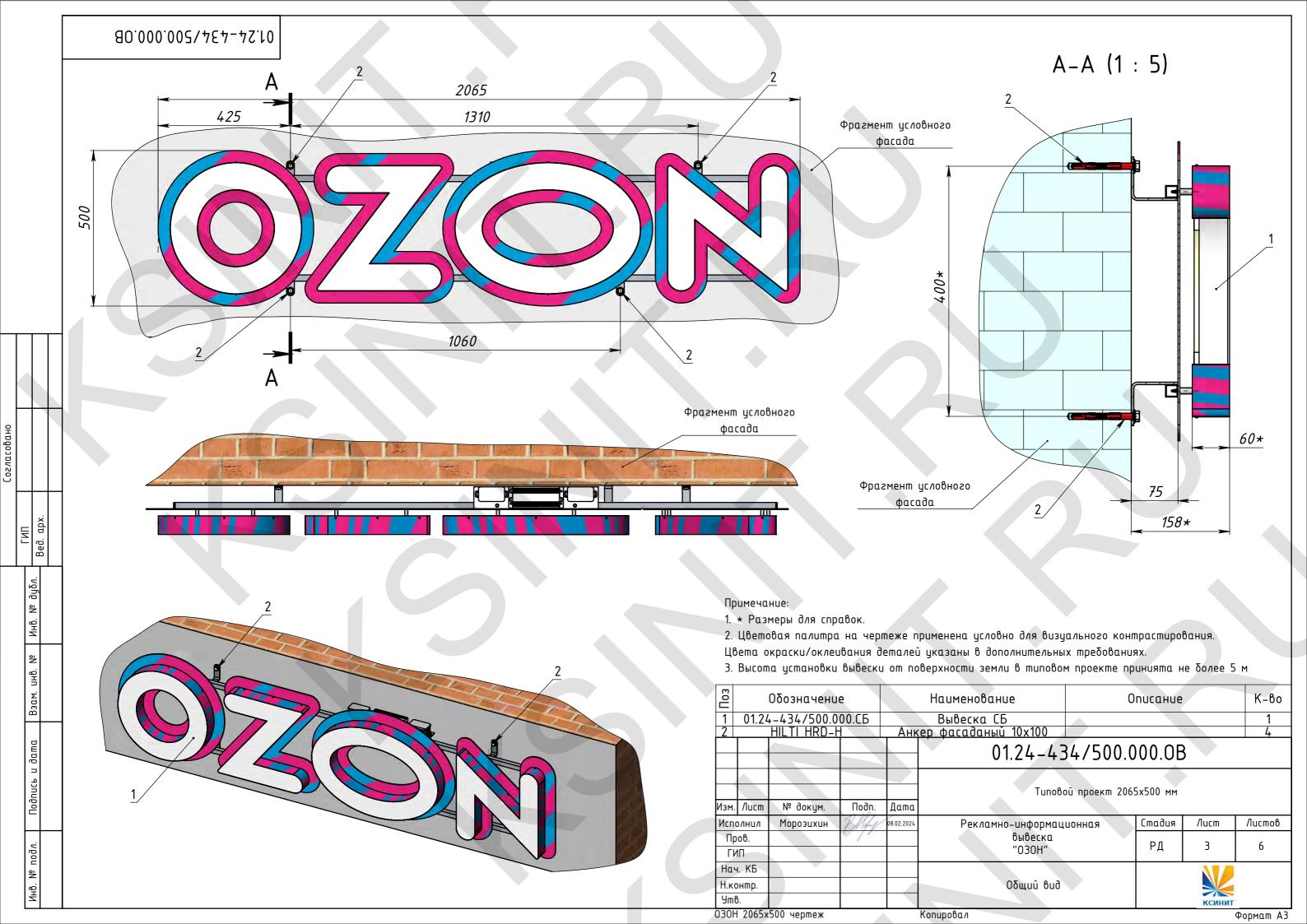
В данном типовом проекте рассмотрен вариант крепления вывески к фасадной стене из полнотелого керамического кирпича. При случае, когда базовый материал фасада/стены или монтажная схема, отпичаются от представленных в данном типовом проекте, рекомендуется произвести подбор анкерной техники и монтажных приспособлений ориентируясь на значения расчетных сил реакций в узлах крепления, приведенных в расчётно-пояснительной записке.

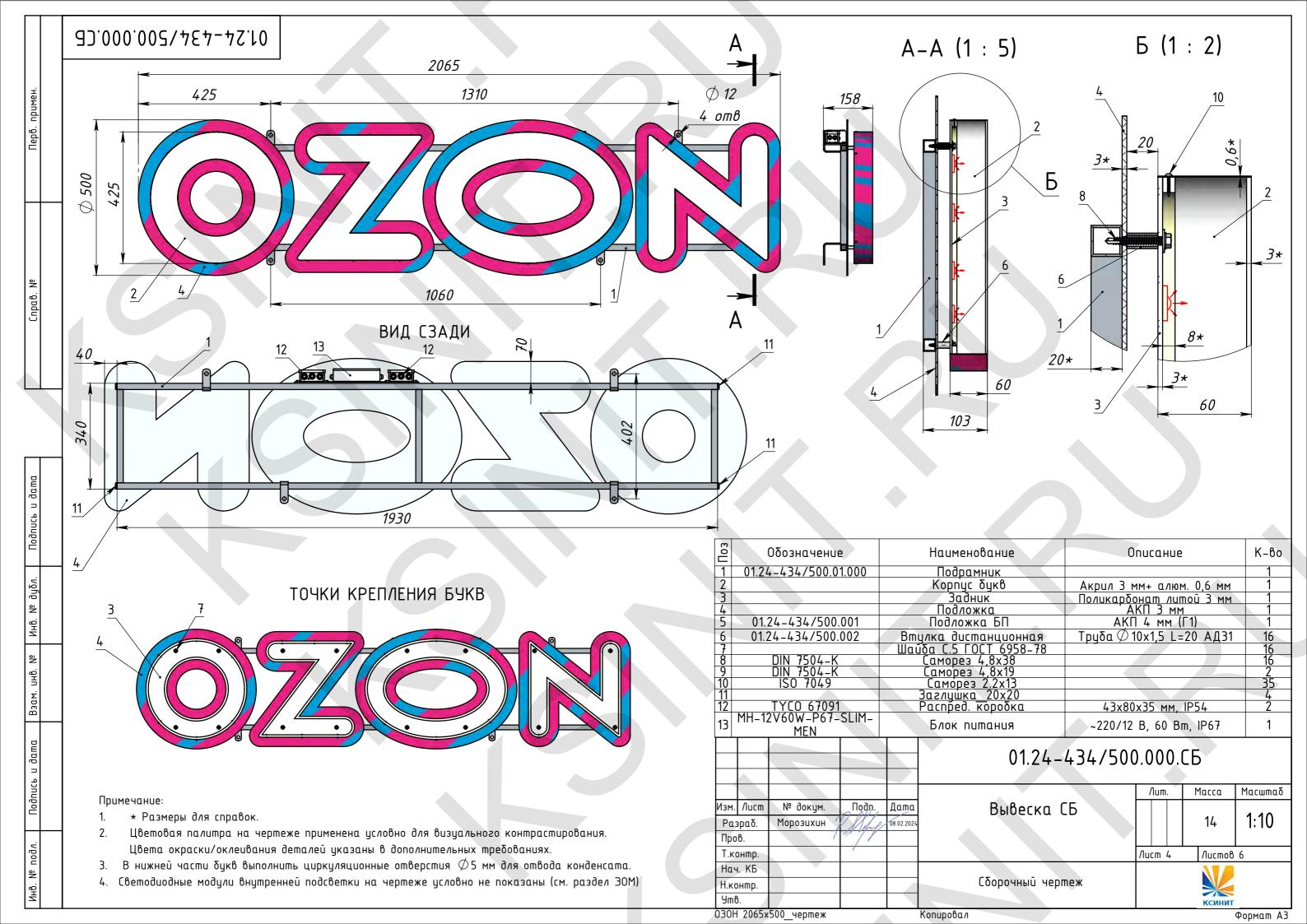
Подсветка букв осуществляется светодиодными герметичными модулями, цвет холодный белый 9000К.

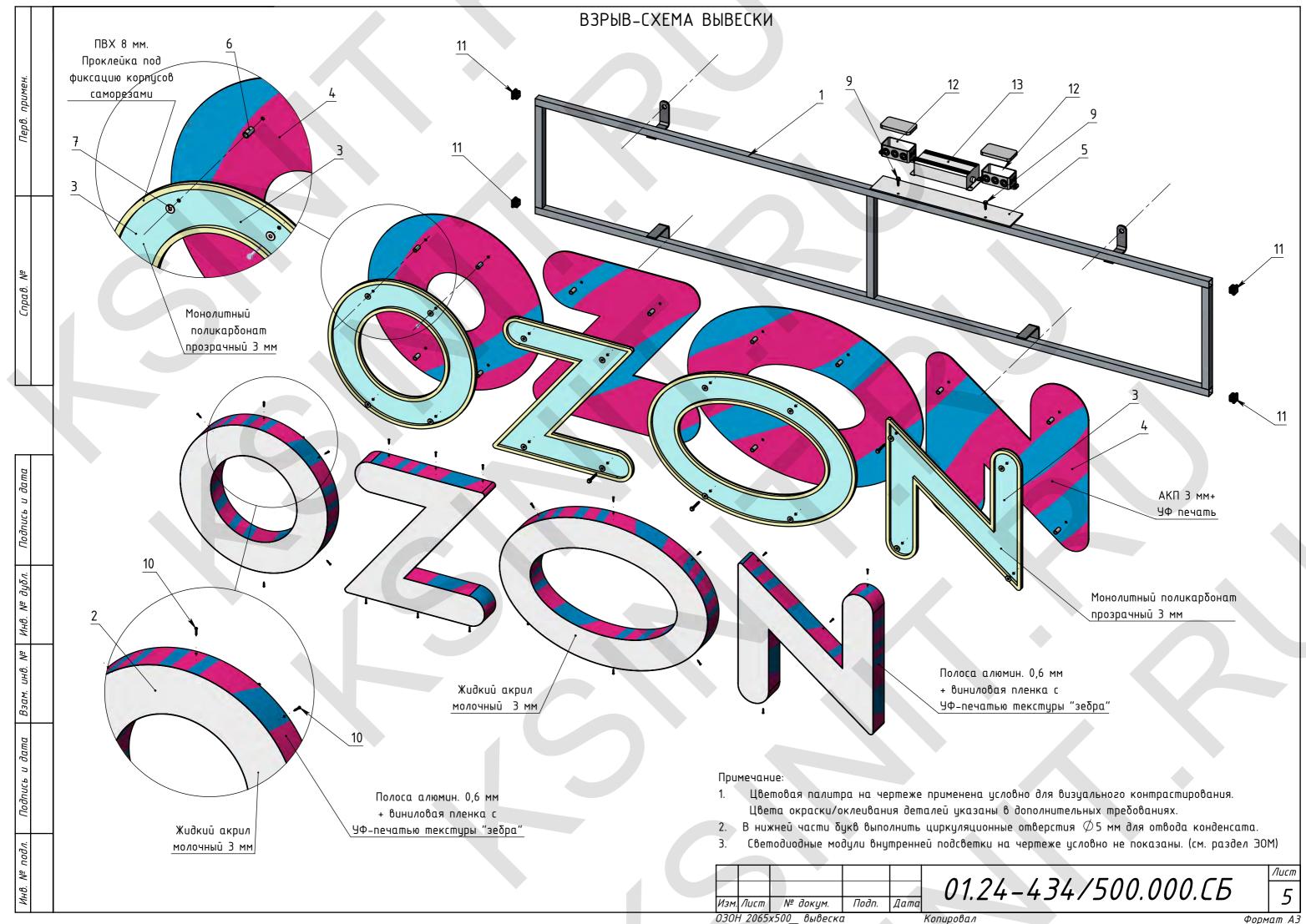
- 3. УКАЗАНИЯ К РАЗРАБОТКЕ ЧЕРТЕЖЕЙ, ИЗГОТОВЛЕНИЮ И МОНТАЖУ МЕТАЛЛОКОНСТРУКЦИЙ
- 3.1. Изготовление и монтаж конструкций производить в соответствии с требованиями:
- ГОСТ 23118-2012 "Конструкции стальные строительные. Общие технические условия";
- СП53-101-98 "Изготовление и контроль качественных строительных конструкций";
- МДС 53-1.2001 "Рекомендации по монтажу стальных строительных конструкций"
- (κ CHuΠ 3.03.01-87;
- 3.3. Материалы для сварки (заводской) принимать по таблице 55, приложения 2 СНиП II-23-81 "Стальные конструкции. Нормы проектирования":
- Категории и уровни качества сварных швов в соответствии с ГОСТ 23118-2012.

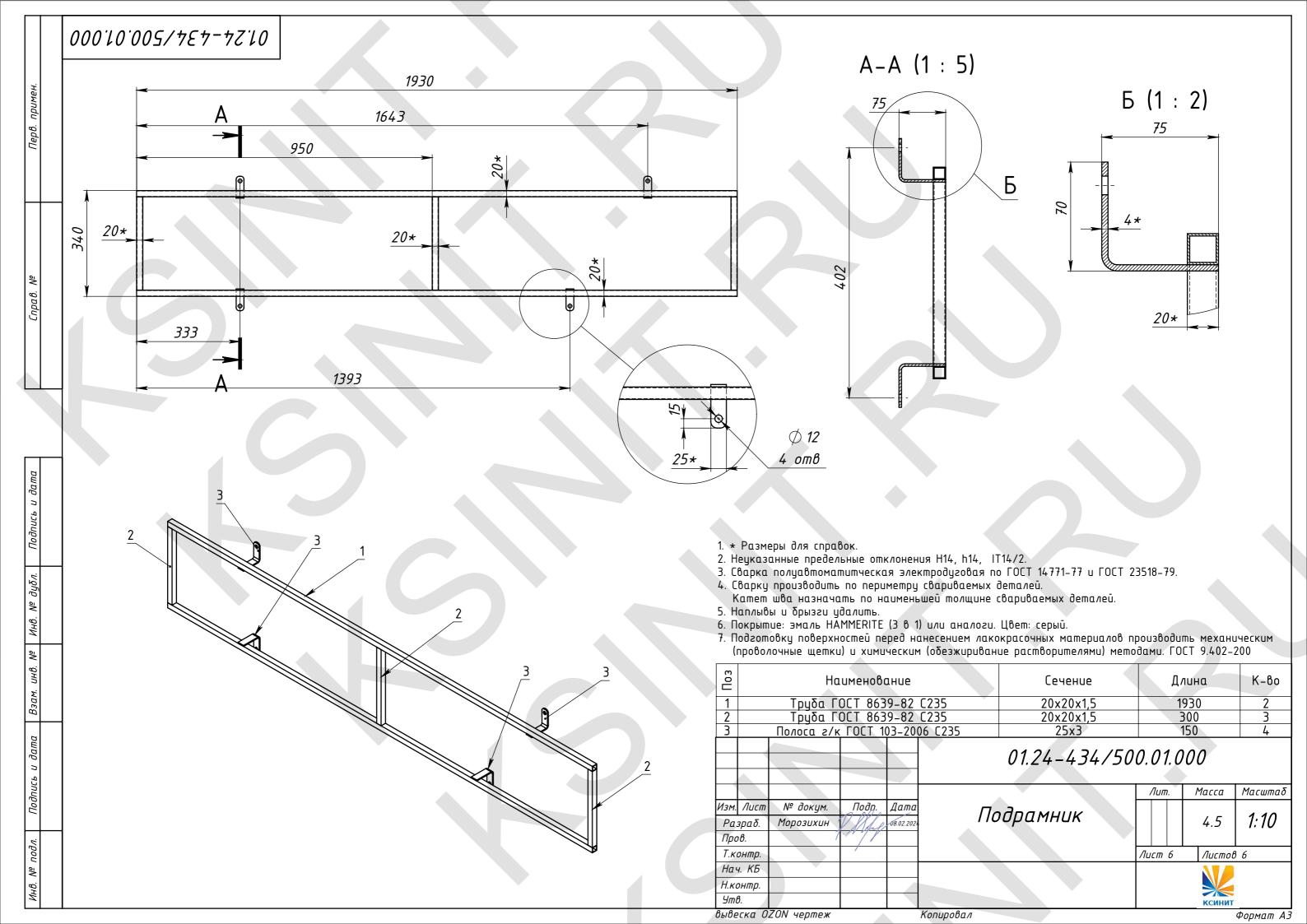
Сварные соединения выполнять угловыми и стыковыми швами по контуру сопряжения деталей, в соответствии с требованиями ГОСТ 5264-80. Катеты сварных швов принять по наименьшей толщине свариваемых деталей.

4. АНТИКОРРОЗИОННАЯ ЗАЩИТА.


- 4.1. Защиту металлоконструкций от коррозии производить на заводе-изготовителе.
- 4.2. Поверхности металлоконструкций должны иметь третью степень очистки от окислов по ГОСТ 9.402-2004 и первую степень обезжиривания. Работы по окраске конструкций производить в соответствии со СНиП 2.03.11-85 "Правила производства и приемки работ. Защита стальных конструкций от коррозии". Качество лакокрасочного покрытия должно соответствовать V класси по ГОСТ 9.032-74*.
- 4.3. Места монтажных стыков после окончательного закрепления, а также элементы конструкци $ilde{u}$
- с нарушением заводской окраски, окрасить покрытием, указанным в тех. требованиях чертежей.


5. ЭКСПЛУАТАЦИЯ И ОБСЛУЖИВАНИЕ


- 5.1 Любые работы по эксплуатации и обслуживанию установки проводить в соответствии с требованиями СНиП 12-03-2001 и 12-04-2002.
- 5.2 Производить визуальный контроль целостности лакокрасочного покрытия, выявление остаточной деформации, а также состояние сварных соединений конструкций с периодичностью не реже одного раза в год.
- 5.3. Подключение изделия к питающей электросети должно осуществляться электротехническим персоналом заказчика в соответствии с Правилами устройства электроустановок (ПУЭ). Во внешней линии электропитания должна быть предусмотрена возможность отключения установки от внешней сети через автоматический выключатель и УЗО согласно ПУЭ.
- 5.4. Эксплуатация изделия должна осуществляться подготовленным электротехническим персоналом в соответствии с требованиями «Правил техники безопасности при эксплуатации электроустановок» и требованиями настоящей инструкции. Периодичность технического обслуживания устанавливает владелец.


					01.24-434/500.ОД			
					Типовой проект 2065х500 мм			
Изм	. /lucm	№ докум.	Подр.	Дата				
Исг	полнил	Морозихин	Mark	08.02.2024	Рекламно-информационная	Стадия	/lucm	Листов
_	•		7/		вывеска "030H"	РД	2	6
Ha	ч. КБ							
Н.контр.					Общие данные			
Уm	ιβ.					КСИНИТ		
Исполнил Пров. ГИП Нач. КБ Н.контр. Утв.					"030H"	РД	КСИНИТ	6

Копировал Формат АЗ

Перв. применен	
Справ. №	
Подпись и дата	

Подпись и дата

Инв.№ подл.

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

РЕКЛАМНО-ИНФОРМАЦИОННАЯ ВЫВЕСКА "030H"

Габаритные размеры: 2065х500 мм

ТИПОВОЙ ПРОЕКТ

ШИФР 01.24-434/500.РР

ГИП:

Морозихин Р.В.

Представитель заказчика:

2024 г.

Справ. № Перв. применен	Оглавление 1. Исходные данные для проектирования 2. Исходные данные для расчета 3. Определение ветровой нагрузки 4. Определение снеговой нагрузки 5. Расчетная схема 6. Расчеты и анализ результатов 7. Вывод 8. Список используемой литературы:	4 4 6 7 8 10
Подпись и дата		
№инв. №дубл.		
Взамен инв.		
Подпись и дата	01.24-434/500.PP	
Инв.№ подл.	Изм. Лист. № докум. Подпусь. Дата Разраб. Морозихин. Рекламно-информационная РД. 2 15 Провер. Вывеска «ОЗОН» ксинит.	- 1

РАСЧЕТ КОНСТРУКЦИИ РЕКЛАМНО-ИНФОРМАЦИОННОЙ УСТАНОВКИ

1. Исходные данные для проектирования

- 1.1. Район строительства: типовой проект под VI— ветровой район
- 1.2. Тип конструкции фасадная вывеска.
- 1.3. Конструктивное решение:

и дата

Подпись

N°Guðn

NounB

DHD

Взамен

дата

Инв.№ подл.

Корпус объемных световых букв выполнен из молочного жидкого акрила 3 мм (лицевая часть), и листового алюминия 0,6 мм (боковая часть) с накатанной виниловой пленкой с "УФ"-печатью текстуры "зебра". Задник букв выполнен из прозрачного монолитного поликарбоната 3 мм. Соединение корпусов букв и задников осуществляется при помощи саморезов 2,2х13 DIN 7049 в специально приклеенные по периметру задника бобышки из вспененного ПВХ 8 мм.

Подложка представляет собой декоративно-художественный элемент из алюминиевой композитной панели АКП 3 мм с прямой УФ печатью, расположенную на сварном каркасе из трубы 20x20x1,5 ГОСТ 8639-82 Ст. Каркас окрашен на заводе-изготовителе. Буквы через задники крепятся к подрамнику через дистанционные втулки самонарезающими винтами 4,8x38 DIN 7504K.

Tun nodcветки— внутренняя светодиодная комбинированная: засветка лицевой части букв+ контражур

Монтаж осуществляется прямым способом на фасад здания при помощи универсальных анкеров HILTI HRD 10x100 (4 шт) или аналогов (при условии, что базовым материалом стены является кирпич или бетон). В иных случаях тип крепежа выбирается на основании разрабатываемого проекта, исходя из конкретных технических условий, требований и исходных данных.

В данном типовом проекте рассмотрен вариант крепления вывески к фасадной стене из полнотелого керамического кирпича. При случае, когда базовый материал фасада/стены или монтажная схема, отличаются от представленных в данном типовом проекте, рекомендуется произвести подбор анкерной техники и монтажных приспособлений ориентируясь на значения расчетных сил реакций в узлах крепления, приведенных в расчётно-пояснительной записке.

A-A (1:5)

A 2065

1310

Фрагмент условного фасава

Фрагмент условного фасава

Фрагмент условного фасава

Фрагмент условного фасава

158*

Рис. 2 Общий вид установки

						Лист
					01.24-434/500.PP	2
Изм.	Лист	№ докум	Подпись.	Дата		ر

2. Исходные данные для расчета.

- 2.1. Высота вывески над уровнем земли: z=5 м
- 2.2. Габаритные размеры секции: 2065x500 мм
- 2.3. Масса вывески: М=14 кг
- 2.4. Площадь букв: S_B= 0,8 м²
- 2.5. Расчетные сопротивления стали, кгс/см²......Ry=2350, Rs=1350, Ru=3600, Rbp=4350;
- 2.6. Расчетные сопротивления металла сварных швов, кгс/см²Rwf=1850, Rwun=4200;

3. Определение ветровой нагрузки

Для вычисления нагрузки согласно [1] приняты следующие данные:

- VI- ветровой район; V-снеговой район
- Нормативное значение ветрового давления $W_0 = 0.73$ кПа (табл. 11.1 {1});
- Тип местности В

и дата

Νοθήδη

Noung

дата

NHBNO

■ Приведенные расчетные размеры установки: $L_n = 2,1$ м, $H_n = 0,5$ м

Нормативное значение средней составляющей ветровой нагрузки:

Фасадные рекламные конструкции следует относить к ограждающим конструкциям здания.

Для элементов ограждения и узлов их крепления необходимо учитывать пиковые положительные w+ и отрицательные w_ воздействия ветровой нагрузки, нормативные значения которых определяются по формуле (см. п. 11.2 [1]):

$$W_{+(-)} = W_0 * k(z_e) * [1 + \xi(z_e)] * c_{\mathrm{p},\pm} * v_{\pm}$$
 , ade

 W_0 – нормативное значение давления ветра (см. 11.1.4 [1]),

 Z_{e} – эквивалентная высота (см. 11.1.5 [1]),

 $k(z_e)$ и $\xi(z_e)$ – коэффициенты, учитывающие, соответственно, изменение давления и пульсаций давления ветра на высоте ze (см. 11.1.6 и 11.1.8);

 $c_{
m p,\pm}$ - пиковые значения аэродинамических коэффициентов положительного давления (+) или отсоса (-);

 v_{\pm} — коэффициенты корреляции ветровой нагрузки, соответствующие положительному давлению (+) и отсосу (-); значения этих коэффициентов приведены в таблице 11.8 в зависимости от площади ограждения A, с которой собирается ветровая нагрузка.

$$k_Z = k_{10} * \left(\frac{z}{10}\right)^{2\alpha} = 0.65 * \left(\frac{5}{10}\right)^{2*0.2} = 0.5$$

 $k_{10}=0.65$; z=5 3; $\alpha=0.2$

						Лист
					01.24-434/500.PP	/
Изм.	Лист	№ докум	Подпись.	Дата		4

$$\xi_z=\xi_{10}*(rac{z}{10})^{-lpha}=1,06*(rac{5}{10})^{-0,2}=$$
1,22 ξ_{10} =1,06 (cm. Ταδλυμу 11.4 [1])

Таблица 11.8

А, м²	<2	5	10	>20
V ₊	1,0	0,9	0,8	0,75
V_	1,0	0,85	0,75	0,65

$$v_{\pm} = 1$$

Для отдельно стоящих прямоугольных в плане зданий значения коэффициентов $c_{
m p,\pm}$ приведены в В.1.17 приложения В.1.

Так как проект является типовым и не известно точное положение вывески на фасаде здания, расчет будем вести исходя из самого неблагоприятного положения с наибольшим аэродинамическим коэффициентом.

- 1) Для стен прямоугольных в плане зданий пиковое положительное значение аэродинамического коэффициента $c_{
 m p,+}$ = 1,2
- 2) Пиковые значения отрицательного аэродинамического коэффициента $c_{
 m p,-}$ для стен и плоских покрытий (рис. В.24) приведены в табл. В.12

Таблица В.12

Подпись и дата

Νοθηδη

NounB

и дата

MHBNO

Участок	A	В	С	D	E
c _{p,-}	-2,2	-1,2	-3,4	-2,4	-1,5

CTEHA

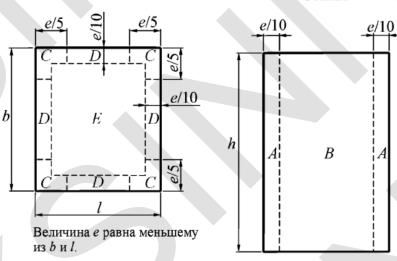


Рисунок В.24

$$W_{+(-)} = W_0 * k(z_e) * [1 + \xi(z_e)] * c_{p,\pm} * v_{\pm}$$

 $c_{\rm p,-}$ =-2,2 (участок А)

						Лист
					01.24-434/500.PP	_
Изм.	Лист	№ докум	Подпись.	Дата)

Полная приведенная расчетная ветровая нагрузка:

$$W_{\text{pac}_{4}} = W_{+(-)} * y$$
, ade

у=1,4 - коэффициент надежности по нагрузке (п.11) [1]

$$W_{\text{расч}} = 1.8 * 1.4 = 2.5$$
 кПа=255 кгс/м²

Полная расчетная ветровая нагрузка рекламную конструкцию:

$$W_{ ext{Betp}} = W_{ ext{pacy}} * S_{ ext{B}} = 255 * 0,8 = 204$$
 кас

4. Определение снеговой нагрузки

Полное расчетное значение снеговой нагрузки S на горизонтальную проекцию покрытия следует определять по формуле:

$$S = S_0 * A * \gamma_{f2}$$

где S_0 - нормативное значение веса снегового покрова на 1 m^2 горизонтальной поверхности земли, определяется по формуле п. 10.1

$$S_0 = c_e * c_t * \mu * S_a$$

 S_g =2,5 кПа – вес снегового покрова на 1 м $^{\scriptscriptstyle 2}$ горизонтальной поверхности для V-снегового района

 μ - коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый в соответствии с пл.10.4

u=1

Подпись и дата

N°Gυδη

NounB

и дата

 c_{e^-} коэф., учитывающий снос снега с покрытий здания под действием ветра или иных факторов

$$c_e = (1.2 - 0.4 * \sqrt{k})(0.8 + 0.002 * l_c)$$

$$k_Z = k_{10} * \left(\frac{z}{10}\right)^{2\alpha} = 0.65 * \left(\frac{5}{10}\right)^{2*0.2} = 0.5$$

для типа местности ${f B}: \ \alpha = 0.2; \ k_{10} = 0,65;$

z=5- высота расчетной плоскости от уровня земли

$$l_c = 2 * b - \frac{b^2}{l} = 2 * 0.1 - \frac{0.1^2}{2.1} = 0.2$$

l=2,1 м – длина установки

b=0,1 – приведенная ширина установки (глубина букв+толщина рамы)

$$c_e = (1.2 - 0.4 * \sqrt{k})(0.8 + 0.002 * l_c) = (1.2 - 0.4 * \sqrt{0.65})(0.8 + 0.002 * 0.2) = 0.9$$

 c_t =1 – термический коэффициент

Изм.	Лист	№ докум	Подпись.	Дата	

01.24-434/500.PP

Лист

$$S_0 = c_e * c_t * \mu * S_g = 0.9 * 1 * 1 * 2.5$$
 кПа = 2,3 кПа= 235 кгс/м²

 $\Upsilon_{ ext{f2}}$ - коэффициент надежности по снеговой нагрузке

 $A = b * L = 0,1 * 2,1 = 0,2 \text{ м}^2 - площадь боковой поверхности, воспринимающей снеговую нагрузку$

Расчетная снеговая нагрузка на информационную установку:

$$S_{\text{CHET}} = S_0 * A * \gamma_{f2} = 235 * 0.2 * 1.4 = 66 \text{ kgc}$$

5. Расчетная схема.

Расчет конструкций и оснований по предельным состояниям 1-й и 2-й групп следует выполнять с учетом неблагоприятных сочетаний нагрузок или соответствующих им усилий.

Расчет на совместное действие ветровой, снеговой и весовой нагрузок проводится на основе метода конечных элементов с применением десяти узлового элемента в форме тетраэдра с серединными узлами, каждый из узлов которого имеет шесть степеней свободы. Расчетная программа: COSMOSWORKS.

Приложенные нагрузки:

- 1) Ветровая нагрузка $W_{
 m Berp}$ =204 кгс
- 2) Снеговая нагрузка $S_{
 m cher}$ = 66 кгс
- 3) Вес вывески М=14 кгс

Подпись и дата

Νοθηδη

Nound

и дата

MHB.Nº,

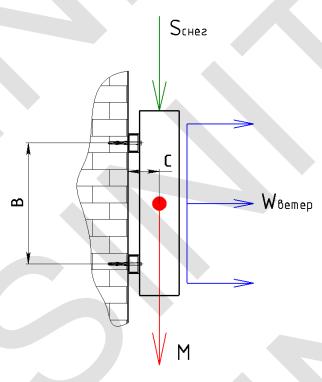


Рис.З Расчетная схема

						/luci
					01.24-434/500.PP	7
Изм.	Лист	№ докум	Подпись.	Дата		/

6. Расчеты и анализ результатов

Приложение 01- схема нагружения

Приложение 02- сетка конечных элементов

Приложение 03- распределение возникающих напряжений

Приложение 04- распределение перемещений элементов

Приложение 05- реакции в точках крепления

В <u>приложении 03</u> приведена иллюстрация распределения эквивалентных напряжений, построенная на основе теории Мизеса.

Из результатов расчета следует, что максимальные эквивалентные напряжения в металлоконструкции щита, составляющие **1653** кгс/см2, не превышают расчетного сопротивления выбранной марки стали Ry=2350 кгс/см2 и расчетного сопротивления металла сварных швов Rwf=1850 кгс/см2 согласно СНиП II-23-81* "Стальные конструкции".

В <u>приложении 04</u> приведена иллюстрация распределений перемещений узлов металлоконструкции под действием расчетных нагрузок.

Максимальное перемещение консоли составляет 3,8 мм

Для элементов конструкций зданий и сооружений, предельные прогибы и перемещения которых не оговорены настоящим и другими нормативными документами, вертикальные и горизонтальные прогибы и перемещения от постоянных, длительных и кратковременных нагрузок не должны превышать 1/150 пролета или 1/75 вылета консоли. (15.2.3. СП 20.13330.2011 "Нагрузки и воздействия")

При действии расчетных нагрузок максимальное перемещение узлов:

1) для пролета:

и дата

Подпись

№дч5л.

Nound

ПНВ

Взамен

дата

NHBNO

Fmax=3,8 MM $F_{max}/L=3,8/1310<1/150$

В приложении 05 приведена иллюстрация возникающих сил реакций в местах креплений

Максимальные силы реакций:

N=562 H = 0,56 кН (осевая нагрузка) $V_{\rm rez} = \sqrt{237^2 + 98^2} = 256$ H= 0,3 кН (поперечная нагрузка)

Вывеска монтируется к фасаду здания при помощи анкеров HILTI HRD-H 10x100. Расчеты показали, что возникающие силы реакции (вырывающие и срезающие) не превышают расчетных значений сил, указанных производителем в официальном техническом руководстве.

Изм.	Лист	№ докум	Подпись.	Дата

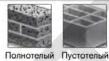
01.24-434/500.PP

/*П*ИСТ

Механический анкер HRD

Пластиковый анкер для многоточечного крепления

Материал основания



(без трещин)

(с трещинами)

кирпич

кирпич

ячеистый бетон

Предварительно

напряженные рамы многопустотные

и дата

Подпись 1

Νοθηδη

Nound

Взамен инв.

Подпись и дата

подл. NHB.Nº ,

Руководство по анкерному крепежу Hilti 2023

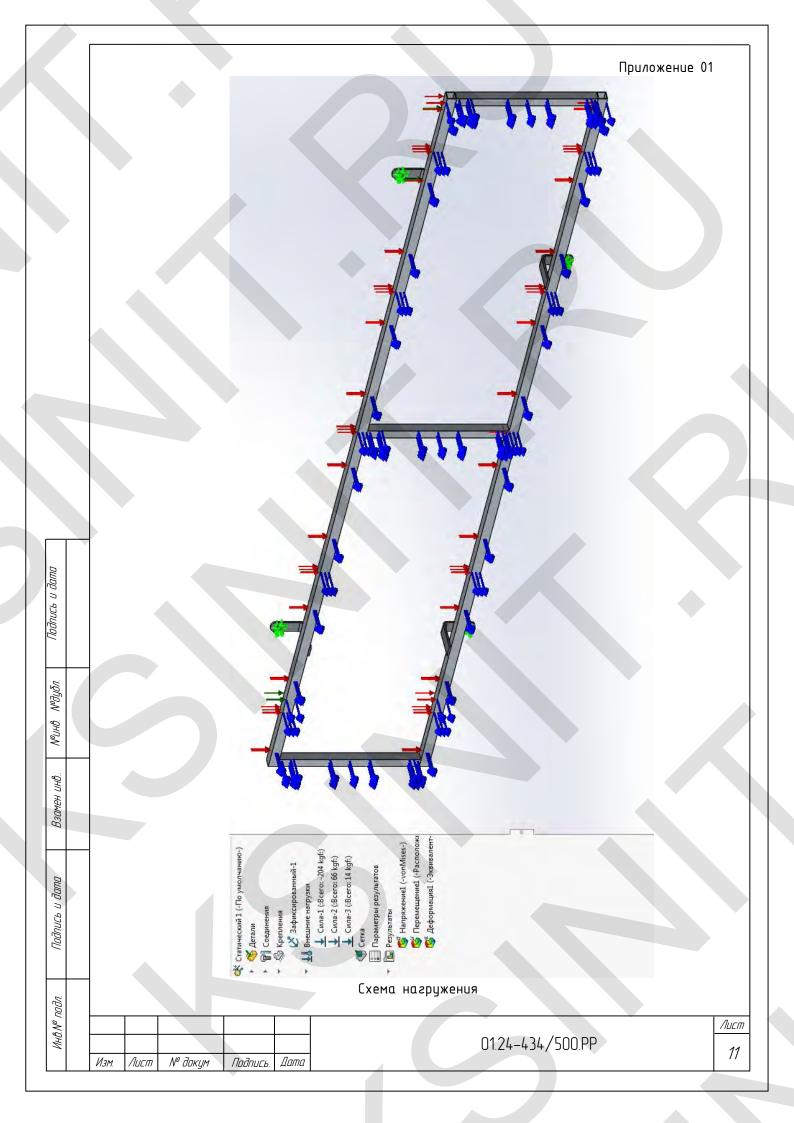
Расчетное сопротивление для кирпичной кладки (часть 1)

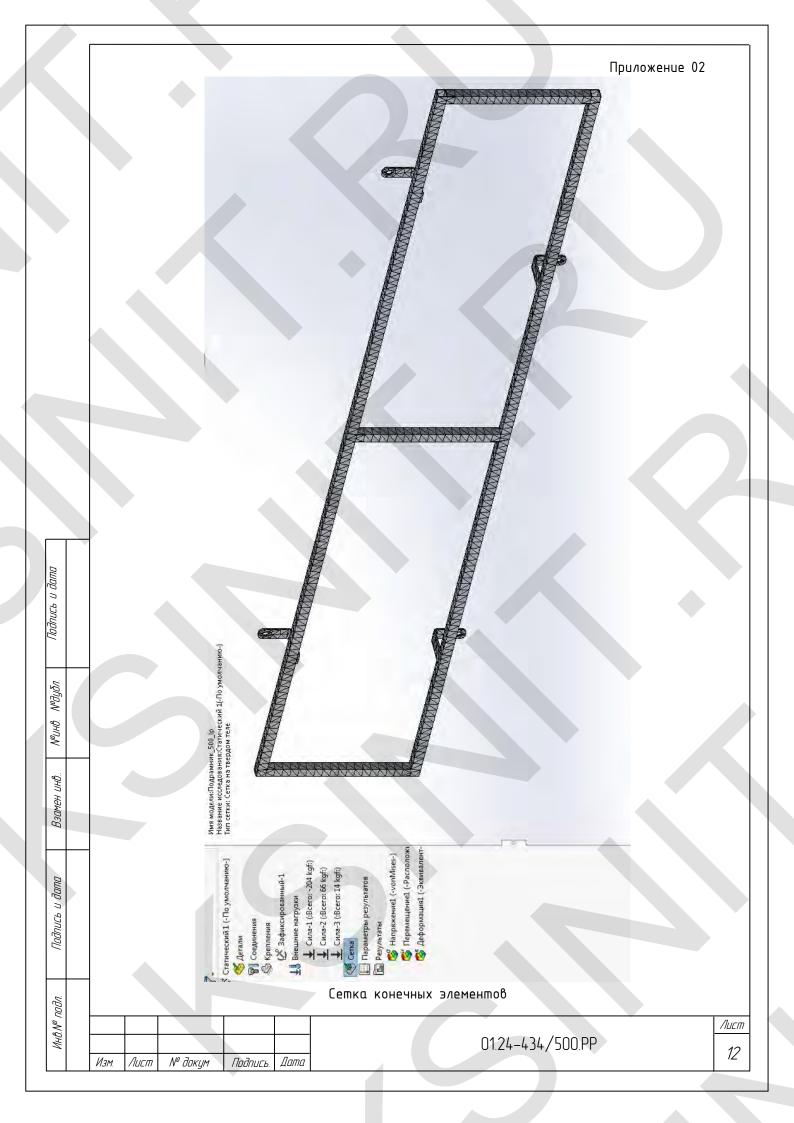
Размер анкера			HRD 8	VHRD 10			
		h _{nom}	[MM]	50 ^{d)}	50 ^{d)}	70 ^{d)}	90
	1 - 00 11/2 - 2	F _{Rd}	[ĸH]	0.0	1,2	c)	
Полнотелый керамический	f _b ≥ 20 H/мм ²	F _{Rd}		0,6	1,8ª	3/	
кирпич Mz 2,0 DIN V 105-100/EN 771-1	f _b ≥ 10 H/мм ²	F _{Rd} F _{Rd}	[ĸH]	0,48	0,8	c)	
					1,2 a)	7	
	f _b ≥ 20 H/мм ²	F _{Rd}	[kH]	10	1,2	c)	1
Полнотелый силикатный кирпич KS 2,0	IB = 20 TI/MIM	F _{Rd}	[KI-I]	1,0	1,8ª)	G	
DIN V 106 /EN 771-2	f _b ≥ 10 H/мм ²	F _{Rd}	[ĸH]	0,8	0,8	c)	
	IB = TO TI/MINI	F _{Rd}			1,2 a)		
	f _b ≥ 20 H/мм²	F _{Rd}	[ĸH]	-	1,4	c)	
Легкий полнотелый блок И 0,9 DIN V 18151-100/EN 771					2,4 a)		
	f _b ≥ 10 H/мм ²	F _{Rd} F _{Rd}	[kH]	•	1,0	c)	4
					1,8 a)		439
	$f_b \ge 2 H/mm^2$	F _{Rd}	[kH]	0,2	- 4		
Пустотелый керамический кирпич Hlz B 12/1,2 A ^{b)}	f _b ≥ 12 H/мм ²	F _{Rd}	[kH]	0,2			
lустотелый керамический	$f_b \ge 8 \text{ H/mm}^2$	F _{Rd}	[kH]	4	0,6	1	
кирпич с вертикальной	$f_b \ge 10 \text{ H/mm}^2$	F _{Rd}	[kH]	2	0,8	-	
перфорацией Hlz 1,2-2DF F b)	f _b ≥ 12 H/мм ²	F _{Rd}	[ĸH]		0,8		
	f _b ≥ 8 H/мм ²	F _{Rd}	[ĸH]	_	0,16	0,3	-
Пустотелый керамический	f _b ≥ 10 H/мм ²	F _{Rd}	[ĸH]	-	0,2	0,36	+
кирпич с вертикальной перфорацией Hlz 1,0-2DF G b)	f _b ≥ 12 H/мм ²	F _{Rd}	[kH]		0,24	0,36	
	f _b ≥ 20 H/мм ²	F _{Rd}	[ĸH]	+	0,36	0,6	-

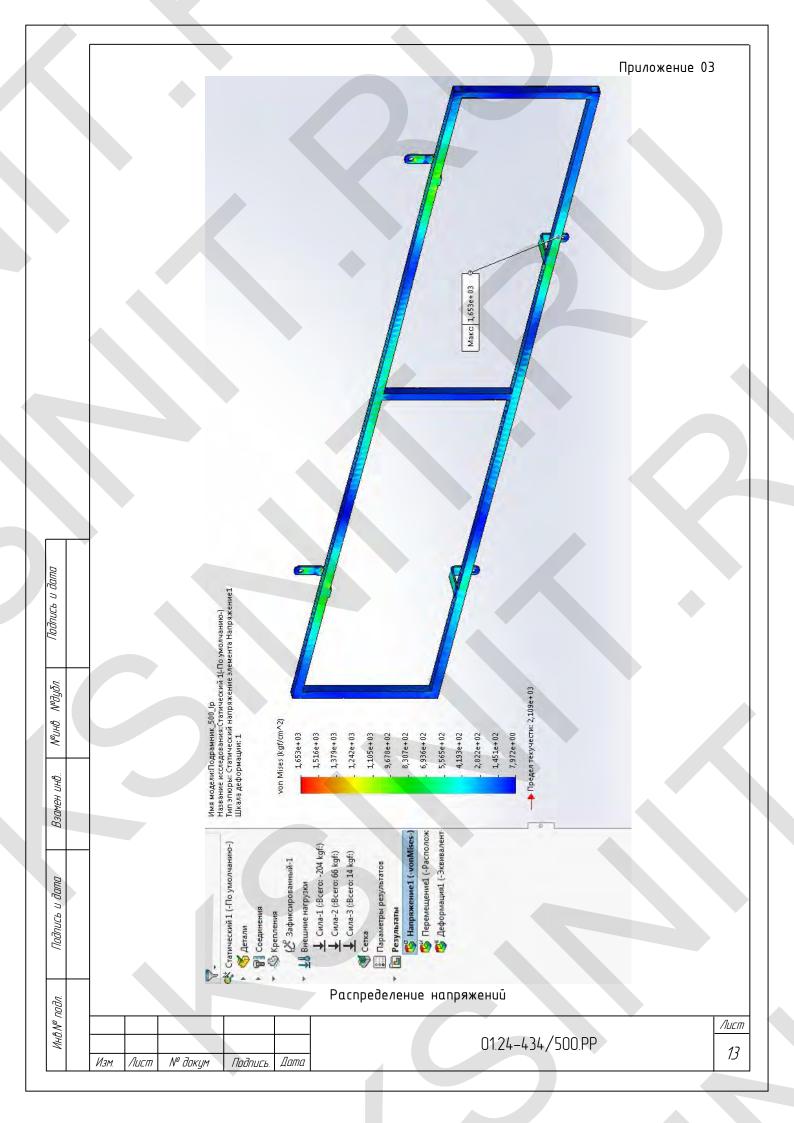
Изм.	Лист	№ докум	Подпись.	Дата

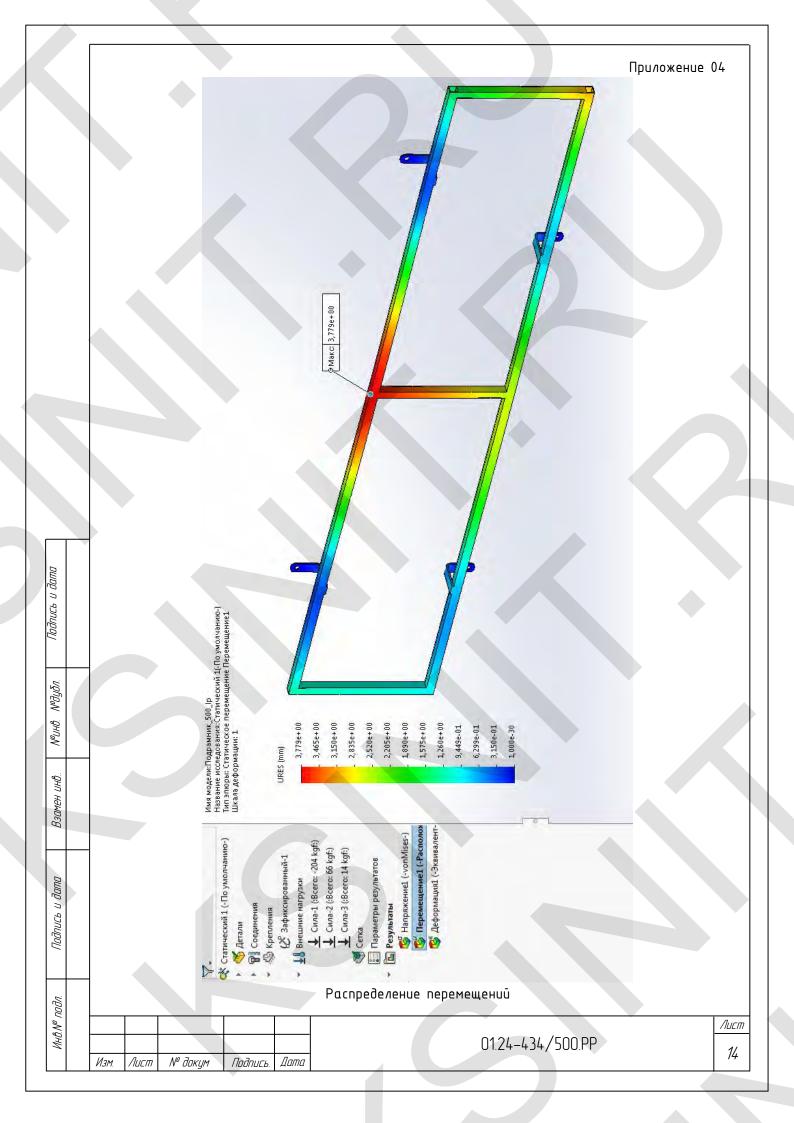
01.24-434/500.PP

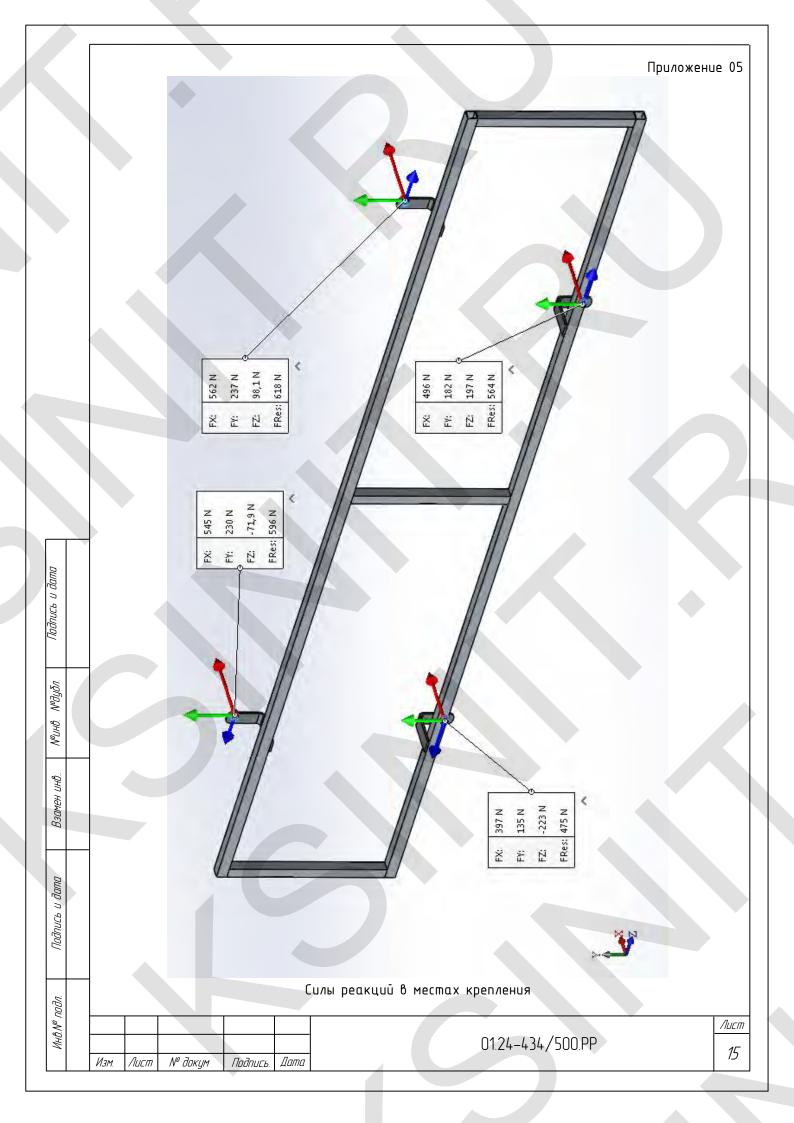
Лист


7. Вывод


Проведенные расчеты показали, что основные несущие элементы конструкций рекламной установки удовлетворяют требованиям СНиПов и ГОСТов на жесткость и прочность. Разработанная проектная документация соответствует техническим условиям и требованиям.


8. Список используемой литературы:


- [1] СНиП 2.01.07-85 "Нагрузки и воздействия" СП 20.13330.2016 (2016);
- [2] СП 16.13330.2017 " СНиП II-23-81*Стальные конструкции;
- [3] -Алямовский А. А. SolidWorks/COSMOSWorks. Инженерный анализ методом конечных элементов. М.: ДМК Пресс, 2004. 432 с.
- [4] Руководство по анкерному крепежу Hilti 2023


חיים הייים אייים איי	ווסמוותרף ת חמווות	
	№инб. №dyдл.	
	Взамен инв	
	Подпись и дата	
	Инв.№ подл.	

